Loading…

Learning Entangled Interactions of Complex Causality via Self-Paced Contrastive Learning

Learning causality from large-scale text corpora is an important task with numerous applications—for example, in finance, biology, medicine, and scientific discovery. Prior studies have focused mainly on simple causality, which only includes one cause-effect pair. However, causality is notoriously d...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on knowledge discovery from data 2023-12, Vol.18 (3), p.1-24, Article 56
Main Authors: Liang, Yunji, Liu, Lei, Huangfu, Luwen, Samtani, Sagar, Yu, Zhiwen, Zeng, Daniel D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Learning causality from large-scale text corpora is an important task with numerous applications—for example, in finance, biology, medicine, and scientific discovery. Prior studies have focused mainly on simple causality, which only includes one cause-effect pair. However, causality is notoriously difficult to understand and analyze because of multiple cause spans and their entangled interactions. To detect complex causality, we propose a self-paced contrastive learning model, namely N2NCause, to learn entangled interactions between multiple spans. Specifically, N2NCause introduces data enhancement operations to convert implicit expressions into explicit expressions with the most rational causal connectives for the synthesis of positive samples and to invert the directed connection between a cause-effect pair for the synthesis of negative samples. To learn the semantic dependency and causal direction of positive and negative samples, self-paced contrastive learning is proposed to learn the entangled interactions among spans, including the interaction direction and interaction field. We evaluated the performance of N2NCause in three cause-effect detection tasks. The experimental results show that, with the least data annotation efforts, N2NCause demonstrates competitive performance in detecting simple cause-effect relations, and it is superior to existing solutions for the detection of complex causality.
ISSN:1556-4681
1556-472X
DOI:10.1145/3632406