Loading…
Pareto Optimization of Analog Circuits Using Reinforcement Learning
Analog circuit optimization and design presents a unique set of challenges in the IC design process. Many applications require the designer to optimize for multiple competing objectives, which poses a crucial challenge. Motivated by these practical aspects, we propose a novel method to tackle multi-...
Saved in:
Published in: | ACM transactions on design automation of electronic systems 2024-02, Vol.29 (2), p.1-14, Article 37 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Analog circuit optimization and design presents a unique set of challenges in the IC design process. Many applications require the designer to optimize for multiple competing objectives, which poses a crucial challenge. Motivated by these practical aspects, we propose a novel method to tackle multi-objective optimization for analog circuit design in continuous action spaces. In particular, we propose to (i) extrapolate current techniques in Multi-Objective Reinforcement Learning to continuous state and action spaces and (ii) provide for a dynamically tunable trained model to query user defined preferences in multi-objective optimization in the analog circuit design context. |
---|---|
ISSN: | 1084-4309 1557-7309 |
DOI: | 10.1145/3640463 |