Loading…
Taypsi: Static Enforcement of Privacy Policies for Policy-Agnostic Oblivious Computation
Secure multiparty computation (MPC) techniques enable multiple parties to compute joint functions over their private data without sharing that data with other parties, typically by employing powerful cryptographic protocols to protect individual's data. One challenge when writing such functions...
Saved in:
Published in: | Proceedings of ACM on programming languages 2024-04, Vol.8 (OOPSLA1), p.1407-1436, Article 144 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Secure multiparty computation (MPC) techniques enable multiple parties to compute joint functions over their private data without sharing that data with other parties, typically by employing powerful cryptographic protocols to protect individual's data. One challenge when writing such functions is that most MPC languages force users to intermix programmatic and privacy concerns in a single application, making it difficult to change or audit a program's underlying privacy policy. Prior policy-agnostic MPC languages relied on dynamic enforcement to decouple privacy requirements from program logic. Unfortunately, the resulting overhead makes it difficult to scale MPC applications that manipulate structured data. This work proposes to eliminate this overhead by instead transforming programs into semantically equivalent versions that statically enforce user-provided privacy policies. We have implemented this approach in a new MPC language, called Taypsi; our experimental evaluation demonstrates that the resulting system features considerable performance improvements on a variety of MPC applications involving structured data and complex privacy policies. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3649861 |