Loading…

CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency

Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completi...

Full description

Saved in:
Bibliographic Details
Published in:Performance evaluation review 2024-06, Vol.52 (1), p.49-50
Main Authors: Hanafy, Walid A., Liang, Qianlin, Bashir, Noman, Irwin, David, Shenoy, Prashant
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183
container_end_page 50
container_issue 1
container_start_page 49
container_title Performance evaluation review
container_volume 52
creator Hanafy, Walid A.
Liang, Qianlin
Bashir, Noman
Irwin, David
Shenoy, Prashant
description Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.
doi_str_mv 10.1145/3673660.3655048
format article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3673660_3655048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3655048</sourcerecordid><originalsourceid>FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRsFbXgqu8QNr55i8z7iTEKgS6qOIyfJmfEk2aMolCfXprW13dxb3nLg4ht0BnAELOucq4UnTGlZRU6DMyASmz1AgtzsmEguKpNMZckqtheKcUMgZ6QlY5xrrfrCy2Pt4npf_yEdfNZp3kbf_pkrc-frQ9uqRocRgb24y7JPQxWW7Hpmu-D8PDQ1qEsK_9xu6uyUXAdvA3p5yS18fiJX9Ky-XiOX8oUwRmxlQZB0GhZrLmjEpk1OigvdO1UwqA8VroIIITWW05E0xBQC6p05lzFkHzKZkff23shyH6UG1j02HcVUCrXyfVyUl1crIn7o4E2u5__Ff-AFbRXMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</creator><creatorcontrib>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</creatorcontrib><description>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</description><identifier>ISSN: 0163-5999</identifier><identifier>EISSN: 1557-9484</identifier><identifier>DOI: 10.1145/3673660.3655048</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Architectures ; Cloud computing ; Computer systems organization ; Computing industry ; Distributed architectures ; Professional topics ; Social and professional topics ; Sustainability</subject><ispartof>Performance evaluation review, 2024-06, Vol.52 (1), p.49-50</ispartof><rights>Owner/Author</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</cites><orcidid>0000-0003-1722-4927 ; 0000-0002-5435-1901 ; 0000-0003-4702-5689 ; 0000-0001-9304-910X ; 0000-0001-5765-8194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hanafy, Walid A.</creatorcontrib><creatorcontrib>Liang, Qianlin</creatorcontrib><creatorcontrib>Bashir, Noman</creatorcontrib><creatorcontrib>Irwin, David</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><title>Performance evaluation review</title><addtitle>ACM SIGMETRICS</addtitle><description>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</description><subject>Architectures</subject><subject>Cloud computing</subject><subject>Computer systems organization</subject><subject>Computing industry</subject><subject>Distributed architectures</subject><subject>Professional topics</subject><subject>Social and professional topics</subject><subject>Sustainability</subject><issn>0163-5999</issn><issn>1557-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRsFbXgqu8QNr55i8z7iTEKgS6qOIyfJmfEk2aMolCfXprW13dxb3nLg4ht0BnAELOucq4UnTGlZRU6DMyASmz1AgtzsmEguKpNMZckqtheKcUMgZ6QlY5xrrfrCy2Pt4npf_yEdfNZp3kbf_pkrc-frQ9uqRocRgb24y7JPQxWW7Hpmu-D8PDQ1qEsK_9xu6uyUXAdvA3p5yS18fiJX9Ky-XiOX8oUwRmxlQZB0GhZrLmjEpk1OigvdO1UwqA8VroIIITWW05E0xBQC6p05lzFkHzKZkff23shyH6UG1j02HcVUCrXyfVyUl1crIn7o4E2u5__Ff-AFbRXMA</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Hanafy, Walid A.</creator><creator>Liang, Qianlin</creator><creator>Bashir, Noman</creator><creator>Irwin, David</creator><creator>Shenoy, Prashant</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1722-4927</orcidid><orcidid>https://orcid.org/0000-0002-5435-1901</orcidid><orcidid>https://orcid.org/0000-0003-4702-5689</orcidid><orcidid>https://orcid.org/0000-0001-9304-910X</orcidid><orcidid>https://orcid.org/0000-0001-5765-8194</orcidid></search><sort><creationdate>20240610</creationdate><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><author>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Architectures</topic><topic>Cloud computing</topic><topic>Computer systems organization</topic><topic>Computing industry</topic><topic>Distributed architectures</topic><topic>Professional topics</topic><topic>Social and professional topics</topic><topic>Sustainability</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanafy, Walid A.</creatorcontrib><creatorcontrib>Liang, Qianlin</creatorcontrib><creatorcontrib>Bashir, Noman</creatorcontrib><creatorcontrib>Irwin, David</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><collection>CrossRef</collection><jtitle>Performance evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanafy, Walid A.</au><au>Liang, Qianlin</au><au>Bashir, Noman</au><au>Irwin, David</au><au>Shenoy, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</atitle><jtitle>Performance evaluation review</jtitle><stitle>ACM SIGMETRICS</stitle><date>2024-06-10</date><risdate>2024</risdate><volume>52</volume><issue>1</issue><spage>49</spage><epage>50</epage><pages>49-50</pages><issn>0163-5999</issn><eissn>1557-9484</eissn><abstract>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3673660.3655048</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-1722-4927</orcidid><orcidid>https://orcid.org/0000-0002-5435-1901</orcidid><orcidid>https://orcid.org/0000-0003-4702-5689</orcidid><orcidid>https://orcid.org/0000-0001-9304-910X</orcidid><orcidid>https://orcid.org/0000-0001-5765-8194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0163-5999
ispartof Performance evaluation review, 2024-06, Vol.52 (1), p.49-50
issn 0163-5999
1557-9484
language eng
recordid cdi_crossref_primary_10_1145_3673660_3655048
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Architectures
Cloud computing
Computer systems organization
Computing industry
Distributed architectures
Professional topics
Social and professional topics
Sustainability
title CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CarbonScaler:%20Leveraging%20Cloud%20Workload%20Elasticity%20for%20Optimizing%20Carbon-Efficiency&rft.jtitle=Performance%20evaluation%20review&rft.au=Hanafy,%20Walid%20A.&rft.date=2024-06-10&rft.volume=52&rft.issue=1&rft.spage=49&rft.epage=50&rft.pages=49-50&rft.issn=0163-5999&rft.eissn=1557-9484&rft_id=info:doi/10.1145/3673660.3655048&rft_dat=%3Cacm_cross%3E3655048%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true