Loading…
CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency
Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completi...
Saved in:
Published in: | Performance evaluation review 2024-06, Vol.52 (1), p.49-50 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183 |
container_end_page | 50 |
container_issue | 1 |
container_start_page | 49 |
container_title | Performance evaluation review |
container_volume | 52 |
creator | Hanafy, Walid A. Liang, Qianlin Bashir, Noman Irwin, David Shenoy, Prashant |
description | Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible. |
doi_str_mv | 10.1145/3673660.3655048 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3673660_3655048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3655048</sourcerecordid><originalsourceid>FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRsFbXgqu8QNr55i8z7iTEKgS6qOIyfJmfEk2aMolCfXprW13dxb3nLg4ht0BnAELOucq4UnTGlZRU6DMyASmz1AgtzsmEguKpNMZckqtheKcUMgZ6QlY5xrrfrCy2Pt4npf_yEdfNZp3kbf_pkrc-frQ9uqRocRgb24y7JPQxWW7Hpmu-D8PDQ1qEsK_9xu6uyUXAdvA3p5yS18fiJX9Ky-XiOX8oUwRmxlQZB0GhZrLmjEpk1OigvdO1UwqA8VroIIITWW05E0xBQC6p05lzFkHzKZkff23shyH6UG1j02HcVUCrXyfVyUl1crIn7o4E2u5__Ff-AFbRXMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</creator><creatorcontrib>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</creatorcontrib><description>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</description><identifier>ISSN: 0163-5999</identifier><identifier>EISSN: 1557-9484</identifier><identifier>DOI: 10.1145/3673660.3655048</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Architectures ; Cloud computing ; Computer systems organization ; Computing industry ; Distributed architectures ; Professional topics ; Social and professional topics ; Sustainability</subject><ispartof>Performance evaluation review, 2024-06, Vol.52 (1), p.49-50</ispartof><rights>Owner/Author</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</cites><orcidid>0000-0003-1722-4927 ; 0000-0002-5435-1901 ; 0000-0003-4702-5689 ; 0000-0001-9304-910X ; 0000-0001-5765-8194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hanafy, Walid A.</creatorcontrib><creatorcontrib>Liang, Qianlin</creatorcontrib><creatorcontrib>Bashir, Noman</creatorcontrib><creatorcontrib>Irwin, David</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><title>Performance evaluation review</title><addtitle>ACM SIGMETRICS</addtitle><description>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</description><subject>Architectures</subject><subject>Cloud computing</subject><subject>Computer systems organization</subject><subject>Computing industry</subject><subject>Distributed architectures</subject><subject>Professional topics</subject><subject>Social and professional topics</subject><subject>Sustainability</subject><issn>0163-5999</issn><issn>1557-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRsFbXgqu8QNr55i8z7iTEKgS6qOIyfJmfEk2aMolCfXprW13dxb3nLg4ht0BnAELOucq4UnTGlZRU6DMyASmz1AgtzsmEguKpNMZckqtheKcUMgZ6QlY5xrrfrCy2Pt4npf_yEdfNZp3kbf_pkrc-frQ9uqRocRgb24y7JPQxWW7Hpmu-D8PDQ1qEsK_9xu6uyUXAdvA3p5yS18fiJX9Ky-XiOX8oUwRmxlQZB0GhZrLmjEpk1OigvdO1UwqA8VroIIITWW05E0xBQC6p05lzFkHzKZkff23shyH6UG1j02HcVUCrXyfVyUl1crIn7o4E2u5__Ff-AFbRXMA</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Hanafy, Walid A.</creator><creator>Liang, Qianlin</creator><creator>Bashir, Noman</creator><creator>Irwin, David</creator><creator>Shenoy, Prashant</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1722-4927</orcidid><orcidid>https://orcid.org/0000-0002-5435-1901</orcidid><orcidid>https://orcid.org/0000-0003-4702-5689</orcidid><orcidid>https://orcid.org/0000-0001-9304-910X</orcidid><orcidid>https://orcid.org/0000-0001-5765-8194</orcidid></search><sort><creationdate>20240610</creationdate><title>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</title><author>Hanafy, Walid A. ; Liang, Qianlin ; Bashir, Noman ; Irwin, David ; Shenoy, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Architectures</topic><topic>Cloud computing</topic><topic>Computer systems organization</topic><topic>Computing industry</topic><topic>Distributed architectures</topic><topic>Professional topics</topic><topic>Social and professional topics</topic><topic>Sustainability</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanafy, Walid A.</creatorcontrib><creatorcontrib>Liang, Qianlin</creatorcontrib><creatorcontrib>Bashir, Noman</creatorcontrib><creatorcontrib>Irwin, David</creatorcontrib><creatorcontrib>Shenoy, Prashant</creatorcontrib><collection>CrossRef</collection><jtitle>Performance evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanafy, Walid A.</au><au>Liang, Qianlin</au><au>Bashir, Noman</au><au>Irwin, David</au><au>Shenoy, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency</atitle><jtitle>Performance evaluation review</jtitle><stitle>ACM SIGMETRICS</stitle><date>2024-06-10</date><risdate>2024</risdate><volume>52</volume><issue>1</issue><spage>49</spage><epage>50</epage><pages>49-50</pages><issn>0163-5999</issn><eissn>1557-9484</eissn><abstract>Due to inherent variations in energy's carbon intensity, temporal shifting has become a key method in reducing the carbon footprint of batch workloads. However, temporally shifting workloads involves searching for periods with lower carbon intensity, which increases the workload's completion time. In this paper, we present CarbonScaler, a new approach that reduces carbon emissions of batch workloads without extending their completion time. Our approach relies on applications' ability to change their compute demand by scaling the workload based on fluctuations in energy's carbon intensity. We present a carbon-aware scheduling algorithm, a Kubernetes-based prototype, and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We evaluate CarbonScaler using real-world applications and show that it can yield 33% carbon savings without extending the completion time and up to 32% extra carbon savings over state-of-the-art suspend-resume policies when completion time is flexible.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3673660.3655048</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-1722-4927</orcidid><orcidid>https://orcid.org/0000-0002-5435-1901</orcidid><orcidid>https://orcid.org/0000-0003-4702-5689</orcidid><orcidid>https://orcid.org/0000-0001-9304-910X</orcidid><orcidid>https://orcid.org/0000-0001-5765-8194</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5999 |
ispartof | Performance evaluation review, 2024-06, Vol.52 (1), p.49-50 |
issn | 0163-5999 1557-9484 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3673660_3655048 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Architectures Cloud computing Computer systems organization Computing industry Distributed architectures Professional topics Social and professional topics Sustainability |
title | CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CarbonScaler:%20Leveraging%20Cloud%20Workload%20Elasticity%20for%20Optimizing%20Carbon-Efficiency&rft.jtitle=Performance%20evaluation%20review&rft.au=Hanafy,%20Walid%20A.&rft.date=2024-06-10&rft.volume=52&rft.issue=1&rft.spage=49&rft.epage=50&rft.pages=49-50&rft.issn=0163-5999&rft.eissn=1557-9484&rft_id=info:doi/10.1145/3673660.3655048&rft_dat=%3Cacm_cross%3E3655048%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a129t-69d1f6a825b3205a2098f8ed8bd661123b48f4fd47bc324261fa350d87ddca183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |