Loading…

HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory

Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing...

Full description

Saved in:
Bibliographic Details
Published in:ACM journal on emerging technologies in computing systems 2024-11, Vol.20 (4), p.1-17, Article 15
Main Authors: Rakka, Mariam, Amer, Walaa, Chen, Hanning, Imani, Mohsen, Kurdahi, Fadi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53
container_end_page 17
container_issue 4
container_start_page 1
container_title ACM journal on emerging technologies in computing systems
container_volume 20
creator Rakka, Mariam
Amer, Walaa
Chen, Hanning
Imani, Mohsen
Kurdahi, Fadi
description Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.
doi_str_mv 10.1145/3695875
format article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3695875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3695875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUgdiZvTAF_xHHMVlogkVJRle6Rsc8oKHEquwz575uqpcPpTu_97g0PoXtKnihNxTPPlMiluEATKgRJ0jwll-ebs2t0E-MvIVwqqSaoLhbralUuX_AMfzXdX6t3fcBunGLYQkgWTQc-Nr3XLV5D40fHwCjtcAU6-Mb_4FcdweLe41XoDcR40EqfLKHrw3CLrpxuI9yd9hRt3t828yKpPj_K-axKtKAiUTTjgjCbg7Sc5blTWjBmlbVKOMucoMykzBAJUqcZqFTr74xKbt34IUHwKXo8xprQxxjA1dvQdDoMNSX1oZb6VMtIPhxJbboz9G_uAeTdXDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</creator><creatorcontrib>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</creatorcontrib><description>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</description><identifier>ISSN: 1550-4832</identifier><identifier>EISSN: 1550-4840</identifier><identifier>DOI: 10.1145/3695875</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Artificial intelligence ; Computer systems organization ; Computing methodologies ; Emerging simulation ; Hardware ; Machine learning algorithms ; Modeling and simulation ; Single instruction, multiple data</subject><ispartof>ACM journal on emerging technologies in computing systems, 2024-11, Vol.20 (4), p.1-17, Article 15</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</cites><orcidid>0000-0002-6982-365X ; 0000-0002-5761-0622 ; 0000-0003-1956-5135 ; 0000-0002-2514-7960 ; 0009-0002-1753-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Amer, Walaa</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><title>ACM journal on emerging technologies in computing systems</title><addtitle>ACM JETC</addtitle><description>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</description><subject>Artificial intelligence</subject><subject>Computer systems organization</subject><subject>Computing methodologies</subject><subject>Emerging simulation</subject><subject>Hardware</subject><subject>Machine learning algorithms</subject><subject>Modeling and simulation</subject><subject>Single instruction, multiple data</subject><issn>1550-4832</issn><issn>1550-4840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUgdiZvTAF_xHHMVlogkVJRle6Rsc8oKHEquwz575uqpcPpTu_97g0PoXtKnihNxTPPlMiluEATKgRJ0jwll-ebs2t0E-MvIVwqqSaoLhbralUuX_AMfzXdX6t3fcBunGLYQkgWTQc-Nr3XLV5D40fHwCjtcAU6-Mb_4FcdweLe41XoDcR40EqfLKHrw3CLrpxuI9yd9hRt3t828yKpPj_K-axKtKAiUTTjgjCbg7Sc5blTWjBmlbVKOMucoMykzBAJUqcZqFTr74xKbt34IUHwKXo8xprQxxjA1dvQdDoMNSX1oZb6VMtIPhxJbboz9G_uAeTdXDY</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Rakka, Mariam</creator><creator>Amer, Walaa</creator><creator>Chen, Hanning</creator><creator>Imani, Mohsen</creator><creator>Kurdahi, Fadi</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0003-1956-5135</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0009-0002-1753-6170</orcidid></search><sort><creationdate>20241128</creationdate><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><author>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computer systems organization</topic><topic>Computing methodologies</topic><topic>Emerging simulation</topic><topic>Hardware</topic><topic>Machine learning algorithms</topic><topic>Modeling and simulation</topic><topic>Single instruction, multiple data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Amer, Walaa</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM journal on emerging technologies in computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakka, Mariam</au><au>Amer, Walaa</au><au>Chen, Hanning</au><au>Imani, Mohsen</au><au>Kurdahi, Fadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</atitle><jtitle>ACM journal on emerging technologies in computing systems</jtitle><stitle>ACM JETC</stitle><date>2024-11-28</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>15</artnum><issn>1550-4832</issn><eissn>1550-4840</eissn><abstract>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3695875</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0003-1956-5135</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0009-0002-1753-6170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1550-4832
ispartof ACM journal on emerging technologies in computing systems, 2024-11, Vol.20 (4), p.1-17, Article 15
issn 1550-4832
1550-4840
language eng
recordid cdi_crossref_primary_10_1145_3695875
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Artificial intelligence
Computer systems organization
Computing methodologies
Emerging simulation
Hardware
Machine learning algorithms
Modeling and simulation
Single instruction, multiple data
title HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDRLPIM:%20A%20Simulator%20for%20Hyper-Dimensional%20Reinforcement%20Learning%20Based%20on%20Processing%20In-Memory&rft.jtitle=ACM%20journal%20on%20emerging%20technologies%20in%20computing%20systems&rft.au=Rakka,%20Mariam&rft.date=2024-11-28&rft.volume=20&rft.issue=4&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=15&rft.issn=1550-4832&rft.eissn=1550-4840&rft_id=info:doi/10.1145/3695875&rft_dat=%3Cacm_cross%3E3695875%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true