Loading…
HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory
Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing...
Saved in:
Published in: | ACM journal on emerging technologies in computing systems 2024-11, Vol.20 (4), p.1-17, Article 15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53 |
container_end_page | 17 |
container_issue | 4 |
container_start_page | 1 |
container_title | ACM journal on emerging technologies in computing systems |
container_volume | 20 |
creator | Rakka, Mariam Amer, Walaa Chen, Hanning Imani, Mohsen Kurdahi, Fadi |
description | Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation. |
doi_str_mv | 10.1145/3695875 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3695875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3695875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUgdiZvTAF_xHHMVlogkVJRle6Rsc8oKHEquwz575uqpcPpTu_97g0PoXtKnihNxTPPlMiluEATKgRJ0jwll-ebs2t0E-MvIVwqqSaoLhbralUuX_AMfzXdX6t3fcBunGLYQkgWTQc-Nr3XLV5D40fHwCjtcAU6-Mb_4FcdweLe41XoDcR40EqfLKHrw3CLrpxuI9yd9hRt3t828yKpPj_K-axKtKAiUTTjgjCbg7Sc5blTWjBmlbVKOMucoMykzBAJUqcZqFTr74xKbt34IUHwKXo8xprQxxjA1dvQdDoMNSX1oZb6VMtIPhxJbboz9G_uAeTdXDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</creator><creatorcontrib>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</creatorcontrib><description>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</description><identifier>ISSN: 1550-4832</identifier><identifier>EISSN: 1550-4840</identifier><identifier>DOI: 10.1145/3695875</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Artificial intelligence ; Computer systems organization ; Computing methodologies ; Emerging simulation ; Hardware ; Machine learning algorithms ; Modeling and simulation ; Single instruction, multiple data</subject><ispartof>ACM journal on emerging technologies in computing systems, 2024-11, Vol.20 (4), p.1-17, Article 15</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</cites><orcidid>0000-0002-6982-365X ; 0000-0002-5761-0622 ; 0000-0003-1956-5135 ; 0000-0002-2514-7960 ; 0009-0002-1753-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Amer, Walaa</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><title>ACM journal on emerging technologies in computing systems</title><addtitle>ACM JETC</addtitle><description>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</description><subject>Artificial intelligence</subject><subject>Computer systems organization</subject><subject>Computing methodologies</subject><subject>Emerging simulation</subject><subject>Hardware</subject><subject>Machine learning algorithms</subject><subject>Modeling and simulation</subject><subject>Single instruction, multiple data</subject><issn>1550-4832</issn><issn>1550-4840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUgdiZvTAF_xHHMVlogkVJRle6Rsc8oKHEquwz575uqpcPpTu_97g0PoXtKnihNxTPPlMiluEATKgRJ0jwll-ebs2t0E-MvIVwqqSaoLhbralUuX_AMfzXdX6t3fcBunGLYQkgWTQc-Nr3XLV5D40fHwCjtcAU6-Mb_4FcdweLe41XoDcR40EqfLKHrw3CLrpxuI9yd9hRt3t828yKpPj_K-axKtKAiUTTjgjCbg7Sc5blTWjBmlbVKOMucoMykzBAJUqcZqFTr74xKbt34IUHwKXo8xprQxxjA1dvQdDoMNSX1oZb6VMtIPhxJbboz9G_uAeTdXDY</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Rakka, Mariam</creator><creator>Amer, Walaa</creator><creator>Chen, Hanning</creator><creator>Imani, Mohsen</creator><creator>Kurdahi, Fadi</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0003-1956-5135</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0009-0002-1753-6170</orcidid></search><sort><creationdate>20241128</creationdate><title>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</title><author>Rakka, Mariam ; Amer, Walaa ; Chen, Hanning ; Imani, Mohsen ; Kurdahi, Fadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computer systems organization</topic><topic>Computing methodologies</topic><topic>Emerging simulation</topic><topic>Hardware</topic><topic>Machine learning algorithms</topic><topic>Modeling and simulation</topic><topic>Single instruction, multiple data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakka, Mariam</creatorcontrib><creatorcontrib>Amer, Walaa</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Kurdahi, Fadi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM journal on emerging technologies in computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakka, Mariam</au><au>Amer, Walaa</au><au>Chen, Hanning</au><au>Imani, Mohsen</au><au>Kurdahi, Fadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory</atitle><jtitle>ACM journal on emerging technologies in computing systems</jtitle><stitle>ACM JETC</stitle><date>2024-11-28</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>15</artnum><issn>1550-4832</issn><eissn>1550-4840</eissn><abstract>Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this article, we propose to implement the main operations of a HDC RL framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3695875</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6982-365X</orcidid><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0003-1956-5135</orcidid><orcidid>https://orcid.org/0000-0002-2514-7960</orcidid><orcidid>https://orcid.org/0009-0002-1753-6170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4832 |
ispartof | ACM journal on emerging technologies in computing systems, 2024-11, Vol.20 (4), p.1-17, Article 15 |
issn | 1550-4832 1550-4840 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3695875 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Artificial intelligence Computer systems organization Computing methodologies Emerging simulation Hardware Machine learning algorithms Modeling and simulation Single instruction, multiple data |
title | HDRLPIM: A Simulator for Hyper-Dimensional Reinforcement Learning Based on Processing In-Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDRLPIM:%20A%20Simulator%20for%20Hyper-Dimensional%20Reinforcement%20Learning%20Based%20on%20Processing%20In-Memory&rft.jtitle=ACM%20journal%20on%20emerging%20technologies%20in%20computing%20systems&rft.au=Rakka,%20Mariam&rft.date=2024-11-28&rft.volume=20&rft.issue=4&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=15&rft.issn=1550-4832&rft.eissn=1550-4840&rft_id=info:doi/10.1145/3695875&rft_dat=%3Cacm_cross%3E3695875%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515-9163502d8e7d3288f9a522d9dd95fd2f512c42c07e7a46e94aab6173df8e77e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |