Loading…
Automated ATT&CK Technique Chaining
Incident response teams need to determine what happened before and after an observation of adversary behavior in order to effectively respond to incidents. The MITRE ATT&CK knowledge base provides useful information about adversary behaviors, but provides no guidance on what most likely happened...
Saved in:
Published in: | Digital threats (Print) 2024-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a843-a9c8283ade9df7a578ed857f81d8f470ee47815e35f2c131b4ea356d15a3a3ef3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Digital threats (Print) |
container_volume | |
creator | Skjøtskift, Geir Eian, Martin Bromander, Siri |
description | Incident response teams need to determine what happened before and after an observation of adversary behavior in order to effectively respond to incidents. The MITRE ATT&CK knowledge base provides useful information about adversary behaviors, but provides no guidance on what most likely happened before and after an observed behavior. We have developed methods and open source tools to help incident responders answer the questions “What did most likely happen prior to this observation?” and “What are the adversary's most likely next steps given this observation?”. To be able to answer these questions, we combine semantic modeling of subject matter expert knowledge with data-driven methods trained on data from computer security incidents. |
doi_str_mv | 10.1145/3696013 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3696013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3696013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a843-a9c8283ade9df7a578ed857f81d8f470ee47815e35f2c131b4ea356d15a3a3ef3</originalsourceid><addsrcrecordid>eNpNj89Lw0AQhRdRsNTi3VNA0FN0J7OT3RxD8BcWvOQext1ZGzGpZtuD_71Kq3h6D97Hg0-pU9BXAIausaxKDXigZgXZMidEe_ivH6tFSq9a6wLBOKpm6rzebtYDbyRkddteNI9ZK3419h9byZoV92M_vpyoo8hvSRb7nKv29qZt7vPl091DUy9zdgZzrrwrHHKQKkTLZJ0ERzY6CC4aq0WMdUCCFAsPCM9GGKkMQIyMEnGuLne3flqnNEns3qd-4OmzA9392HV7u2_ybEeyH_6g3_ELEB9HNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated ATT&CK Technique Chaining</title><source>ACM Digital Library</source><creator>Skjøtskift, Geir ; Eian, Martin ; Bromander, Siri</creator><creatorcontrib>Skjøtskift, Geir ; Eian, Martin ; Bromander, Siri</creatorcontrib><description>Incident response teams need to determine what happened before and after an observation of adversary behavior in order to effectively respond to incidents. The MITRE ATT&CK knowledge base provides useful information about adversary behaviors, but provides no guidance on what most likely happened before and after an observed behavior. We have developed methods and open source tools to help incident responders answer the questions “What did most likely happen prior to this observation?” and “What are the adversary's most likely next steps given this observation?”. To be able to answer these questions, we combine semantic modeling of subject matter expert knowledge with data-driven methods trained on data from computer security incidents.</description><identifier>ISSN: 2576-5337</identifier><identifier>EISSN: 2576-5337</identifier><identifier>DOI: 10.1145/3696013</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Applied computing ; Formal security models ; Investigation techniques ; Markov-chain Monte Carlo methods ; Mathematics of computing ; Security and privacy</subject><ispartof>Digital threats (Print), 2024-09</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a843-a9c8283ade9df7a578ed857f81d8f470ee47815e35f2c131b4ea356d15a3a3ef3</cites><orcidid>0009-0001-4240-7277 ; 0009-0003-1802-1483 ; 0009-0004-7461-3202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Skjøtskift, Geir</creatorcontrib><creatorcontrib>Eian, Martin</creatorcontrib><creatorcontrib>Bromander, Siri</creatorcontrib><title>Automated ATT&CK Technique Chaining</title><title>Digital threats (Print)</title><addtitle>ACM DTRAP</addtitle><description>Incident response teams need to determine what happened before and after an observation of adversary behavior in order to effectively respond to incidents. The MITRE ATT&CK knowledge base provides useful information about adversary behaviors, but provides no guidance on what most likely happened before and after an observed behavior. We have developed methods and open source tools to help incident responders answer the questions “What did most likely happen prior to this observation?” and “What are the adversary's most likely next steps given this observation?”. To be able to answer these questions, we combine semantic modeling of subject matter expert knowledge with data-driven methods trained on data from computer security incidents.</description><subject>Applied computing</subject><subject>Formal security models</subject><subject>Investigation techniques</subject><subject>Markov-chain Monte Carlo methods</subject><subject>Mathematics of computing</subject><subject>Security and privacy</subject><issn>2576-5337</issn><issn>2576-5337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj89Lw0AQhRdRsNTi3VNA0FN0J7OT3RxD8BcWvOQext1ZGzGpZtuD_71Kq3h6D97Hg0-pU9BXAIausaxKDXigZgXZMidEe_ivH6tFSq9a6wLBOKpm6rzebtYDbyRkddteNI9ZK3419h9byZoV92M_vpyoo8hvSRb7nKv29qZt7vPl091DUy9zdgZzrrwrHHKQKkTLZJ0ERzY6CC4aq0WMdUCCFAsPCM9GGKkMQIyMEnGuLne3flqnNEns3qd-4OmzA9392HV7u2_ybEeyH_6g3_ELEB9HNw</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Skjøtskift, Geir</creator><creator>Eian, Martin</creator><creator>Bromander, Siri</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-4240-7277</orcidid><orcidid>https://orcid.org/0009-0003-1802-1483</orcidid><orcidid>https://orcid.org/0009-0004-7461-3202</orcidid></search><sort><creationdate>20240913</creationdate><title>Automated ATT&CK Technique Chaining</title><author>Skjøtskift, Geir ; Eian, Martin ; Bromander, Siri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a843-a9c8283ade9df7a578ed857f81d8f470ee47815e35f2c131b4ea356d15a3a3ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied computing</topic><topic>Formal security models</topic><topic>Investigation techniques</topic><topic>Markov-chain Monte Carlo methods</topic><topic>Mathematics of computing</topic><topic>Security and privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skjøtskift, Geir</creatorcontrib><creatorcontrib>Eian, Martin</creatorcontrib><creatorcontrib>Bromander, Siri</creatorcontrib><collection>CrossRef</collection><jtitle>Digital threats (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skjøtskift, Geir</au><au>Eian, Martin</au><au>Bromander, Siri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated ATT&CK Technique Chaining</atitle><jtitle>Digital threats (Print)</jtitle><stitle>ACM DTRAP</stitle><date>2024-09-13</date><risdate>2024</risdate><issn>2576-5337</issn><eissn>2576-5337</eissn><abstract>Incident response teams need to determine what happened before and after an observation of adversary behavior in order to effectively respond to incidents. The MITRE ATT&CK knowledge base provides useful information about adversary behaviors, but provides no guidance on what most likely happened before and after an observed behavior. We have developed methods and open source tools to help incident responders answer the questions “What did most likely happen prior to this observation?” and “What are the adversary's most likely next steps given this observation?”. To be able to answer these questions, we combine semantic modeling of subject matter expert knowledge with data-driven methods trained on data from computer security incidents.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3696013</doi><orcidid>https://orcid.org/0009-0001-4240-7277</orcidid><orcidid>https://orcid.org/0009-0003-1802-1483</orcidid><orcidid>https://orcid.org/0009-0004-7461-3202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-5337 |
ispartof | Digital threats (Print), 2024-09 |
issn | 2576-5337 2576-5337 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3696013 |
source | ACM Digital Library |
subjects | Applied computing Formal security models Investigation techniques Markov-chain Monte Carlo methods Mathematics of computing Security and privacy |
title | Automated ATT&CK Technique Chaining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20ATT&CK%20Technique%20Chaining&rft.jtitle=Digital%20threats%20(Print)&rft.au=Skj%C3%B8tskift,%20Geir&rft.date=2024-09-13&rft.issn=2576-5337&rft.eissn=2576-5337&rft_id=info:doi/10.1145/3696013&rft_dat=%3Cacm_cross%3E3696013%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a843-a9c8283ade9df7a578ed857f81d8f470ee47815e35f2c131b4ea356d15a3a3ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |