Loading…

Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models

This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-ef...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys 2025-04, Vol.57 (4), p.1-47
Main Authors: Sicari, Sabrina, Cevallos M., Jesus F., Rizzardi, Alessandra, Coen-Porisini, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3
container_end_page 47
container_issue 4
container_start_page 1
container_title ACM computing surveys
container_volume 57
creator Sicari, Sabrina
Cevallos M., Jesus F.
Rizzardi, Alessandra
Coen-Porisini, Alberto
description This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.
doi_str_mv 10.1145/3703454
format article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3703454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3703454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</originalsourceid><addsrcrecordid>eNo90MFLwzAUBvAgCtYp3j3l5in60iRN9FbK5gbVIe5e0jSZlTYdySr431vd9PQO3-89Hh9C1xTuKOXinklgXPATlFAhJJGM01OUAMuAAAM4RxcxfgBAymmWoNf1znoy37-3Rnc4Xz3ivPnU3tje-n3Erce_4G0Yg7F4Ofbak2KKQmvwix3DtFRqvx311uLnobFdvERnTnfRXh3nDG0W802xJOX6aVXkJdGKcyKmJ6niGbO1pM6p1DhTO6UhY5nQSpoJ1VwYxutGPqRGAW-kFNRATQVnjs3Q7eGsCUOMwbpqF9peh6-KQvVTRHUsYpI3B6lN_4_-wm-8alYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><source>Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</creator><creatorcontrib>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</creatorcontrib><description>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3703454</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Discourse, dialogue and pragmatics ; Human computer interaction (HCI) ; Human-centered computing ; Natural language generation</subject><ispartof>ACM computing surveys, 2025-04, Vol.57 (4), p.1-47</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</cites><orcidid>0000-0003-4765-5365 ; 0000-0002-6824-8075 ; 0000-0003-2752-4616 ; 0000-0002-3788-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sicari, Sabrina</creatorcontrib><creatorcontrib>Cevallos M., Jesus F.</creatorcontrib><creatorcontrib>Rizzardi, Alessandra</creatorcontrib><creatorcontrib>Coen-Porisini, Alberto</creatorcontrib><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</description><subject>Computing methodologies</subject><subject>Discourse, dialogue and pragmatics</subject><subject>Human computer interaction (HCI)</subject><subject>Human-centered computing</subject><subject>Natural language generation</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAUBvAgCtYp3j3l5in60iRN9FbK5gbVIe5e0jSZlTYdySr431vd9PQO3-89Hh9C1xTuKOXinklgXPATlFAhJJGM01OUAMuAAAM4RxcxfgBAymmWoNf1znoy37-3Rnc4Xz3ivPnU3tje-n3Erce_4G0Yg7F4Ofbak2KKQmvwix3DtFRqvx311uLnobFdvERnTnfRXh3nDG0W802xJOX6aVXkJdGKcyKmJ6niGbO1pM6p1DhTO6UhY5nQSpoJ1VwYxutGPqRGAW-kFNRATQVnjs3Q7eGsCUOMwbpqF9peh6-KQvVTRHUsYpI3B6lN_4_-wm-8alYp</recordid><startdate>20250430</startdate><enddate>20250430</enddate><creator>Sicari, Sabrina</creator><creator>Cevallos M., Jesus F.</creator><creator>Rizzardi, Alessandra</creator><creator>Coen-Porisini, Alberto</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4765-5365</orcidid><orcidid>https://orcid.org/0000-0002-6824-8075</orcidid><orcidid>https://orcid.org/0000-0003-2752-4616</orcidid><orcidid>https://orcid.org/0000-0002-3788-8926</orcidid></search><sort><creationdate>20250430</creationdate><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><author>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computing methodologies</topic><topic>Discourse, dialogue and pragmatics</topic><topic>Human computer interaction (HCI)</topic><topic>Human-centered computing</topic><topic>Natural language generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sicari, Sabrina</creatorcontrib><creatorcontrib>Cevallos M., Jesus F.</creatorcontrib><creatorcontrib>Rizzardi, Alessandra</creatorcontrib><creatorcontrib>Coen-Porisini, Alberto</creatorcontrib><collection>CrossRef</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sicari, Sabrina</au><au>Cevallos M., Jesus F.</au><au>Rizzardi, Alessandra</au><au>Coen-Porisini, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2025-04-30</date><risdate>2025</risdate><volume>57</volume><issue>4</issue><spage>1</spage><epage>47</epage><pages>1-47</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3703454</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0003-4765-5365</orcidid><orcidid>https://orcid.org/0000-0002-6824-8075</orcidid><orcidid>https://orcid.org/0000-0003-2752-4616</orcidid><orcidid>https://orcid.org/0000-0002-3788-8926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2025-04, Vol.57 (4), p.1-47
issn 0360-0300
1557-7341
language eng
recordid cdi_crossref_primary_10_1145_3703454
source Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Computing methodologies
Discourse, dialogue and pragmatics
Human computer interaction (HCI)
Human-centered computing
Natural language generation
title Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-Ethical%20AI:%20Advancements%20in%20Open-Source%20Human-Centric%20Neural%20Language%20Models&rft.jtitle=ACM%20computing%20surveys&rft.au=Sicari,%20Sabrina&rft.date=2025-04-30&rft.volume=57&rft.issue=4&rft.spage=1&rft.epage=47&rft.pages=1-47&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3703454&rft_dat=%3Cacm_cross%3E3703454%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true