Loading…
Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models
This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-ef...
Saved in:
Published in: | ACM computing surveys 2025-04, Vol.57 (4), p.1-47 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3 |
container_end_page | 47 |
container_issue | 4 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 57 |
creator | Sicari, Sabrina Cevallos M., Jesus F. Rizzardi, Alessandra Coen-Porisini, Alberto |
description | This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution. |
doi_str_mv | 10.1145/3703454 |
format | article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3703454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3703454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</originalsourceid><addsrcrecordid>eNo90MFLwzAUBvAgCtYp3j3l5in60iRN9FbK5gbVIe5e0jSZlTYdySr431vd9PQO3-89Hh9C1xTuKOXinklgXPATlFAhJJGM01OUAMuAAAM4RxcxfgBAymmWoNf1znoy37-3Rnc4Xz3ivPnU3tje-n3Erce_4G0Yg7F4Ofbak2KKQmvwix3DtFRqvx311uLnobFdvERnTnfRXh3nDG0W802xJOX6aVXkJdGKcyKmJ6niGbO1pM6p1DhTO6UhY5nQSpoJ1VwYxutGPqRGAW-kFNRATQVnjs3Q7eGsCUOMwbpqF9peh6-KQvVTRHUsYpI3B6lN_4_-wm-8alYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><source>Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</creator><creatorcontrib>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</creatorcontrib><description>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3703454</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Discourse, dialogue and pragmatics ; Human computer interaction (HCI) ; Human-centered computing ; Natural language generation</subject><ispartof>ACM computing surveys, 2025-04, Vol.57 (4), p.1-47</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</cites><orcidid>0000-0003-4765-5365 ; 0000-0002-6824-8075 ; 0000-0003-2752-4616 ; 0000-0002-3788-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sicari, Sabrina</creatorcontrib><creatorcontrib>Cevallos M., Jesus F.</creatorcontrib><creatorcontrib>Rizzardi, Alessandra</creatorcontrib><creatorcontrib>Coen-Porisini, Alberto</creatorcontrib><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</description><subject>Computing methodologies</subject><subject>Discourse, dialogue and pragmatics</subject><subject>Human computer interaction (HCI)</subject><subject>Human-centered computing</subject><subject>Natural language generation</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAUBvAgCtYp3j3l5in60iRN9FbK5gbVIe5e0jSZlTYdySr431vd9PQO3-89Hh9C1xTuKOXinklgXPATlFAhJJGM01OUAMuAAAM4RxcxfgBAymmWoNf1znoy37-3Rnc4Xz3ivPnU3tje-n3Erce_4G0Yg7F4Ofbak2KKQmvwix3DtFRqvx311uLnobFdvERnTnfRXh3nDG0W802xJOX6aVXkJdGKcyKmJ6niGbO1pM6p1DhTO6UhY5nQSpoJ1VwYxutGPqRGAW-kFNRATQVnjs3Q7eGsCUOMwbpqF9peh6-KQvVTRHUsYpI3B6lN_4_-wm-8alYp</recordid><startdate>20250430</startdate><enddate>20250430</enddate><creator>Sicari, Sabrina</creator><creator>Cevallos M., Jesus F.</creator><creator>Rizzardi, Alessandra</creator><creator>Coen-Porisini, Alberto</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4765-5365</orcidid><orcidid>https://orcid.org/0000-0002-6824-8075</orcidid><orcidid>https://orcid.org/0000-0003-2752-4616</orcidid><orcidid>https://orcid.org/0000-0002-3788-8926</orcidid></search><sort><creationdate>20250430</creationdate><title>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</title><author>Sicari, Sabrina ; Cevallos M., Jesus F. ; Rizzardi, Alessandra ; Coen-Porisini, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computing methodologies</topic><topic>Discourse, dialogue and pragmatics</topic><topic>Human computer interaction (HCI)</topic><topic>Human-centered computing</topic><topic>Natural language generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sicari, Sabrina</creatorcontrib><creatorcontrib>Cevallos M., Jesus F.</creatorcontrib><creatorcontrib>Rizzardi, Alessandra</creatorcontrib><creatorcontrib>Coen-Porisini, Alberto</creatorcontrib><collection>CrossRef</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sicari, Sabrina</au><au>Cevallos M., Jesus F.</au><au>Rizzardi, Alessandra</au><au>Coen-Porisini, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2025-04-30</date><risdate>2025</risdate><volume>57</volume><issue>4</issue><spage>1</spage><epage>47</epage><pages>1-47</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>This survey summarizes the most recent methods for building and assessing helpful, honest, and harmless neural language models, considering small, medium, and large-size models. Pointers to open-source resources that help to align pre-trained models are given, including methods that use parameter-efficient techniques, specialized prompting frameworks, adapter modules, case-specific knowledge injection, and adversarially robust training techniques. Special care is given to evidencing recent progress on value alignment, commonsense reasoning, factuality enhancement, and abstract reasoning of language models. Most reviewed works in this survey publicly shared their code and related data and were accepted in world-leading Machine Learning venues. This work aims to help researchers and practitioners accelerate their entrance into the field of human-centric neural language models, which might be a cornerstone of the contemporary and near-future industrial and societal revolution.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3703454</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0003-4765-5365</orcidid><orcidid>https://orcid.org/0000-0002-6824-8075</orcidid><orcidid>https://orcid.org/0000-0003-2752-4616</orcidid><orcidid>https://orcid.org/0000-0002-3788-8926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2025-04, Vol.57 (4), p.1-47 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3703454 |
source | Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Computing methodologies Discourse, dialogue and pragmatics Human computer interaction (HCI) Human-centered computing Natural language generation |
title | Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-Ethical%20AI:%20Advancements%20in%20Open-Source%20Human-Centric%20Neural%20Language%20Models&rft.jtitle=ACM%20computing%20surveys&rft.au=Sicari,%20Sabrina&rft.date=2025-04-30&rft.volume=57&rft.issue=4&rft.spage=1&rft.epage=47&rft.pages=1-47&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3703454&rft_dat=%3Cacm_cross%3E3703454%3C/acm_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a844-503418463eb71ff82cfcbf8a06365a87c844b45c34bd792c804d7751c0b1543f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |