Loading…

Compiler optimization of scalar value communication between speculative threads

While there have been many recent proposals for hardware that supports Thread-Level Speculation (TLS), there has been relatively little work on compiler optimizations to fully exploit this potential for parallelizing programs optimistically. In this paper, we focus on one important limitation of pro...

Full description

Saved in:
Bibliographic Details
Published in:Computer architecture news 2002-12, Vol.30 (5), p.171-183
Main Authors: Zhai, Antonia, Colohan, Christopher B., Steffan, J. Gregory, Mowry, Todd C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While there have been many recent proposals for hardware that supports Thread-Level Speculation (TLS), there has been relatively little work on compiler optimizations to fully exploit this potential for parallelizing programs optimistically. In this paper, we focus on one important limitation of program performance under TLS, which is stalls due to forwarding scalar values between threads that would otherwise cause frequent data dependences. We present and evaluate dataflow algorithms for three increasingly-aggressive instruction scheduling techniques that reduce the critical forwarding path introduced by the synchronization associated with this data forwarding. In addition, we contrast our compiler techniques with related hardware-only approaches. With our most aggressive compiler and hardware techniques, we improve performance under TLS by 6.2-28.5% for 6 of 14 applications, and by at least 2.7% for half of the other applications.
ISSN:0163-5964
DOI:10.1145/635506.605416