Loading…

State-of-the-art in privacy preserving data mining

We provide here an overview of the new and rapidly emerging research area of privacy preserving data mining. We also propose a classification hierarchy that sets the basis for analyzing the work which has been performed in this context. A detailed review of the work accomplished in this area is also...

Full description

Saved in:
Bibliographic Details
Published in:SIGMOD record 2004-03, Vol.33 (1), p.50-57
Main Authors: Verykios, Vassilios S., Bertino, Elisa, Fovino, Igor Nai, Provenza, Loredana Parasiliti, Saygin, Yucel, Theodoridis, Yannis
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313
cites cdi_FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313
container_end_page 57
container_issue 1
container_start_page 50
container_title SIGMOD record
container_volume 33
creator Verykios, Vassilios S.
Bertino, Elisa
Fovino, Igor Nai
Provenza, Loredana Parasiliti
Saygin, Yucel
Theodoridis, Yannis
description We provide here an overview of the new and rapidly emerging research area of privacy preserving data mining. We also propose a classification hierarchy that sets the basis for analyzing the work which has been performed in this context. A detailed review of the work accomplished in this area is also given, along with the coordinates of each work to the classification hierarchy. A brief evaluation is performed, and some initial conclusions are made.
doi_str_mv 10.1145/974121.974131
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_974121_974131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_974121_974131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313</originalsourceid><addsrcrecordid>eNotj0tLAzEUhbNQsLYu3c8fSM3NTSaZpRRfUOhCux7u5KEjdipJKPTfmzKuvgOXc7gfY_cg1gBKP3RGgYT1BQhXbCGgRa6tsDfsNudvIcBCKxZMvhcqgR8jL1-BUyrNODW_aTyRO1eGHNJpnD4bT4WawzjVvGLXkX5yuPvnku2fnz42r3y7e3nbPG65QyULHyDCMDhrWukBjIkelfbOGG-81bZejYvkO6mpC4jCajXYWsHWEykEXDI-77p0zDmF2Ne_DpTOPYj-ItnPkv0siX9JBEWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>State-of-the-art in privacy preserving data mining</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Verykios, Vassilios S. ; Bertino, Elisa ; Fovino, Igor Nai ; Provenza, Loredana Parasiliti ; Saygin, Yucel ; Theodoridis, Yannis</creator><creatorcontrib>Verykios, Vassilios S. ; Bertino, Elisa ; Fovino, Igor Nai ; Provenza, Loredana Parasiliti ; Saygin, Yucel ; Theodoridis, Yannis</creatorcontrib><description>We provide here an overview of the new and rapidly emerging research area of privacy preserving data mining. We also propose a classification hierarchy that sets the basis for analyzing the work which has been performed in this context. A detailed review of the work accomplished in this area is also given, along with the coordinates of each work to the classification hierarchy. A brief evaluation is performed, and some initial conclusions are made.</description><identifier>ISSN: 0163-5808</identifier><identifier>DOI: 10.1145/974121.974131</identifier><language>eng</language><ispartof>SIGMOD record, 2004-03, Vol.33 (1), p.50-57</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313</citedby><cites>FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Verykios, Vassilios S.</creatorcontrib><creatorcontrib>Bertino, Elisa</creatorcontrib><creatorcontrib>Fovino, Igor Nai</creatorcontrib><creatorcontrib>Provenza, Loredana Parasiliti</creatorcontrib><creatorcontrib>Saygin, Yucel</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><title>State-of-the-art in privacy preserving data mining</title><title>SIGMOD record</title><description>We provide here an overview of the new and rapidly emerging research area of privacy preserving data mining. We also propose a classification hierarchy that sets the basis for analyzing the work which has been performed in this context. A detailed review of the work accomplished in this area is also given, along with the coordinates of each work to the classification hierarchy. A brief evaluation is performed, and some initial conclusions are made.</description><issn>0163-5808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotj0tLAzEUhbNQsLYu3c8fSM3NTSaZpRRfUOhCux7u5KEjdipJKPTfmzKuvgOXc7gfY_cg1gBKP3RGgYT1BQhXbCGgRa6tsDfsNudvIcBCKxZMvhcqgR8jL1-BUyrNODW_aTyRO1eGHNJpnD4bT4WawzjVvGLXkX5yuPvnku2fnz42r3y7e3nbPG65QyULHyDCMDhrWukBjIkelfbOGG-81bZejYvkO6mpC4jCajXYWsHWEykEXDI-77p0zDmF2Ne_DpTOPYj-ItnPkv0siX9JBEWU</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Verykios, Vassilios S.</creator><creator>Bertino, Elisa</creator><creator>Fovino, Igor Nai</creator><creator>Provenza, Loredana Parasiliti</creator><creator>Saygin, Yucel</creator><creator>Theodoridis, Yannis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200403</creationdate><title>State-of-the-art in privacy preserving data mining</title><author>Verykios, Vassilios S. ; Bertino, Elisa ; Fovino, Igor Nai ; Provenza, Loredana Parasiliti ; Saygin, Yucel ; Theodoridis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Verykios, Vassilios S.</creatorcontrib><creatorcontrib>Bertino, Elisa</creatorcontrib><creatorcontrib>Fovino, Igor Nai</creatorcontrib><creatorcontrib>Provenza, Loredana Parasiliti</creatorcontrib><creatorcontrib>Saygin, Yucel</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><collection>CrossRef</collection><jtitle>SIGMOD record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verykios, Vassilios S.</au><au>Bertino, Elisa</au><au>Fovino, Igor Nai</au><au>Provenza, Loredana Parasiliti</au><au>Saygin, Yucel</au><au>Theodoridis, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-art in privacy preserving data mining</atitle><jtitle>SIGMOD record</jtitle><date>2004-03</date><risdate>2004</risdate><volume>33</volume><issue>1</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0163-5808</issn><abstract>We provide here an overview of the new and rapidly emerging research area of privacy preserving data mining. We also propose a classification hierarchy that sets the basis for analyzing the work which has been performed in this context. A detailed review of the work accomplished in this area is also given, along with the coordinates of each work to the classification hierarchy. A brief evaluation is performed, and some initial conclusions are made.</abstract><doi>10.1145/974121.974131</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-5808
ispartof SIGMOD record, 2004-03, Vol.33 (1), p.50-57
issn 0163-5808
language eng
recordid cdi_crossref_primary_10_1145_974121_974131
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title State-of-the-art in privacy preserving data mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-art%20in%20privacy%20preserving%20data%20mining&rft.jtitle=SIGMOD%20record&rft.au=Verykios,%20Vassilios%20S.&rft.date=2004-03&rft.volume=33&rft.issue=1&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0163-5808&rft_id=info:doi/10.1145/974121.974131&rft_dat=%3Ccrossref%3E10_1145_974121_974131%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-b1f1bbc8762d1177fd345dc77d7d8581f17cfad925a9e330854b8f1b36daa4313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true