Loading…

Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis

The cardiovascular system is an internal flow loop with multiple branches circulating a complex liquid. The hallmarks of blood flow in arteries are pulsatility and branches, which cause wall stresses to be cyclical and nonuniform. Normal arterial flow is laminar, with secondary flows generated at cu...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of biomedical engineering 1999-01, Vol.1 (1), p.299-329
Main Authors: Wootton, David M, Ku, David N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cardiovascular system is an internal flow loop with multiple branches circulating a complex liquid. The hallmarks of blood flow in arteries are pulsatility and branches, which cause wall stresses to be cyclical and nonuniform. Normal arterial flow is laminar, with secondary flows generated at curves and branches. Arteries can adapt to and modify hemodynamic conditions, and unusual hemodynamic conditions may cause an abnormal biological response. Velocity profile skewing can create pockets in which the wall shear stress is low and oscillates in direction. Atherosclerosis tends to localize to these sites and creates a narrowing of the artery lumen-a stenosis. Plaque rupture or endothelial injury can stimulate thrombosis, which can block blood flow to heart or brain tissues, causing a heart attack or stroke. The small lumen and elevated shear rate in a stenosis create conditions that accelerate platelet accumulation and occlusion. The relationship between thrombosis and fluid mechanics is complex, especially in the post-stenotic flow field. New convection models have been developed to predict clinical occlusion from platelet thrombosis in diseased arteries. Future hemodynamic studies should address the complex mechanics of flow-induced, large-scale wall motion and convection of semisolid particles and cells in flowing blood.
ISSN:1523-9829
1545-4274
DOI:10.1146/annurev.bioeng.1.1.299