Loading…

Smart Responsive Polymers: Fundamentals and Design Principles

In this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, funct...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of condensed matter physics 2020-03, Vol.11 (1), p.271-299
Main Authors: Mukherji, Debashish, Marques, Carlos M, Kremer, Kurt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, function, or stability. Because of this smart responsiveness, these systems are used for the design of advanced functional materials. The most characteristic properties of smart polymers are discussed, especially polymer properties in solvent mixtures. We show how multiscale simulation approaches can shed light on the intriguing experimental observations. Special emphasis is given to two symmetric phenomena: co-non-solvency and co-solvency. The first phenomenon is associated with the collapse of polymers in two miscible good solvents, whereas the latter is associated with the swelling of polymers in poor solvent mixtures. Furthermore, we discuss when the standard Flory-Huggins-type mean-field polymer theory can (or cannot) be applied to understand these complex solution properties. We also sketch a few examples to highlight possible future directions, that is, how smart polymer properties can be used for the design principles of advanced functional materials.
ISSN:1947-5454
1947-5462
DOI:10.1146/annurev-conmatphys-031119-050618