Loading…

Spectroscopic Imaging of Strongly Correlated Electronic States

The study of correlated electronic systems from high-T c cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling micro...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of condensed matter physics 2016-03, Vol.7 (1), p.11-33
Main Authors: Yazdani, Ali, da Silva Neto, Eduardo H, Aynajian, Pegor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143
cites cdi_FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143
container_end_page 33
container_issue 1
container_start_page 11
container_title Annual review of condensed matter physics
container_volume 7
creator Yazdani, Ali
da Silva Neto, Eduardo H
Aynajian, Pegor
description The study of correlated electronic systems from high-T c cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.
doi_str_mv 10.1146/annurev-conmatphys-031214-014529
format article
fullrecord <record><control><sourceid>annualreviews_ZYWBE</sourceid><recordid>TN_cdi_crossref_primary_10_1146_annurev_conmatphys_031214_014529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>n/a</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143</originalsourceid><addsrcrecordid>eNqVkMFKAzEQhoMoWKvvsHjysprZZNPkIkpptVDwUD2H2TRpV7a7SxKVvr2pW_TsaYafj5-Zj5AboLcAXNxh2354-5mbrt1h7Lf7kFMGBfCcAi8LdUJGoPgkL7koTn_3kp-TixDeKRWyKGFE7le9NdF3wXR9bbLFDjd1u8k6l61S2m6afTbtvLcNRrvOZs0P3CZyFVMSLsmZwybYq-Mck7f57HX6nC9fnhbTx2WOXMqYGyORG6WowYo5jopVlSndWiolSwYSXIkoJg4RGQXpLDOMiUpxMQEngLMxuR56uxBrHUwdrdmm19t0jwYhBQBL0MMAmfRP8Nbp3tc79HsNVB-k6aM0_SdND9L0IC1VzIaKA4lNYmv7Ff7f8w3tRoAC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectroscopic Imaging of Strongly Correlated Electronic States</title><source>Annual Reviews Open Access</source><creator>Yazdani, Ali ; da Silva Neto, Eduardo H ; Aynajian, Pegor</creator><creatorcontrib>Yazdani, Ali ; da Silva Neto, Eduardo H ; Aynajian, Pegor ; Princeton Univ., NJ (United States) ; Univ. of British Columbia, Vancouver, BC (Canada) ; Binghamton Univ., NY (United States)</creatorcontrib><description>The study of correlated electronic systems from high-T c cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.</description><identifier>ISSN: 1947-5454</identifier><identifier>EISSN: 1947-5462</identifier><identifier>DOI: 10.1146/annurev-conmatphys-031214-014529</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; cuprates ; heavy fermions ; MATERIALS SCIENCE ; scanning tunneling microscopy (STM) ; superconductivity</subject><ispartof>Annual review of condensed matter physics, 2016-03, Vol.7 (1), p.11-33</ispartof><rights>Copyright © 2016 by Annual Reviews. All rights reserved 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143</citedby><cites>FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143</cites><orcidid>0000000349968904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-conmatphys-031214-014529?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-conmatphys-031214-014529$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>230,314,776,780,881,27869,27901,27902,78329,78434</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-conmatphys-031214-014529$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1686113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>da Silva Neto, Eduardo H</creatorcontrib><creatorcontrib>Aynajian, Pegor</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Univ. of British Columbia, Vancouver, BC (Canada)</creatorcontrib><creatorcontrib>Binghamton Univ., NY (United States)</creatorcontrib><title>Spectroscopic Imaging of Strongly Correlated Electronic States</title><title>Annual review of condensed matter physics</title><description>The study of correlated electronic systems from high-T c cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>cuprates</subject><subject>heavy fermions</subject><subject>MATERIALS SCIENCE</subject><subject>scanning tunneling microscopy (STM)</subject><subject>superconductivity</subject><issn>1947-5454</issn><issn>1947-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVkMFKAzEQhoMoWKvvsHjysprZZNPkIkpptVDwUD2H2TRpV7a7SxKVvr2pW_TsaYafj5-Zj5AboLcAXNxh2354-5mbrt1h7Lf7kFMGBfCcAi8LdUJGoPgkL7koTn_3kp-TixDeKRWyKGFE7le9NdF3wXR9bbLFDjd1u8k6l61S2m6afTbtvLcNRrvOZs0P3CZyFVMSLsmZwybYq-Mck7f57HX6nC9fnhbTx2WOXMqYGyORG6WowYo5jopVlSndWiolSwYSXIkoJg4RGQXpLDOMiUpxMQEngLMxuR56uxBrHUwdrdmm19t0jwYhBQBL0MMAmfRP8Nbp3tc79HsNVB-k6aM0_SdND9L0IC1VzIaKA4lNYmv7Ff7f8w3tRoAC</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>Yazdani, Ali</creator><creator>da Silva Neto, Eduardo H</creator><creator>Aynajian, Pegor</creator><general>Annual Reviews</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000349968904</orcidid></search><sort><creationdate>20160310</creationdate><title>Spectroscopic Imaging of Strongly Correlated Electronic States</title><author>Yazdani, Ali ; da Silva Neto, Eduardo H ; Aynajian, Pegor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>cuprates</topic><topic>heavy fermions</topic><topic>MATERIALS SCIENCE</topic><topic>scanning tunneling microscopy (STM)</topic><topic>superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>da Silva Neto, Eduardo H</creatorcontrib><creatorcontrib>Aynajian, Pegor</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Univ. of British Columbia, Vancouver, BC (Canada)</creatorcontrib><creatorcontrib>Binghamton Univ., NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Annual review of condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdani, Ali</au><au>da Silva Neto, Eduardo H</au><au>Aynajian, Pegor</au><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>Univ. of British Columbia, Vancouver, BC (Canada)</aucorp><aucorp>Binghamton Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Imaging of Strongly Correlated Electronic States</atitle><jtitle>Annual review of condensed matter physics</jtitle><date>2016-03-10</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11</spage><epage>33</epage><pages>11-33</pages><issn>1947-5454</issn><eissn>1947-5462</eissn><abstract>The study of correlated electronic systems from high-T c cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.</abstract><cop>United States</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-conmatphys-031214-014529</doi><tpages>23</tpages><orcidid>https://orcid.org/0000000349968904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1947-5454
ispartof Annual review of condensed matter physics, 2016-03, Vol.7 (1), p.11-33
issn 1947-5454
1947-5462
language eng
recordid cdi_crossref_primary_10_1146_annurev_conmatphys_031214_014529
source Annual Reviews Open Access
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
cuprates
heavy fermions
MATERIALS SCIENCE
scanning tunneling microscopy (STM)
superconductivity
title Spectroscopic Imaging of Strongly Correlated Electronic States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-annualreviews_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Imaging%20of%20Strongly%20Correlated%20Electronic%20States&rft.jtitle=Annual%20review%20of%20condensed%20matter%20physics&rft.au=Yazdani,%20Ali&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2016-03-10&rft.volume=7&rft.issue=1&rft.spage=11&rft.epage=33&rft.pages=11-33&rft.issn=1947-5454&rft.eissn=1947-5462&rft_id=info:doi/10.1146/annurev-conmatphys-031214-014529&rft_dat=%3Cannualreviews_ZYWBE%3En/a%3C/annualreviews_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a488t-cc8a4c990cab3f4a93bbc5fd899853181f5aa67faaa3018fe3c336b94671f6143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true