Loading…

Modeling Power Production in a Tubular Carbon Fuel Cell

Carbon fuel cells (CFCs) offer promising technological opportunities for efficient and clean conversion of carbonaceous fuel (coal, biomass, waste, etc.) into electricity. In this study, we report the results of a finite-element model used to predict the performance of a solid oxide-based tubular ai...

Full description

Saved in:
Bibliographic Details
Main Authors: Johnson, David U., Mitchell, Reginald E., Gür, Turgut M.
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c274t-e772d898aca30efa5806f53f2eccdeaa44fdc09eeff4d6dbee02706747abfece3
cites
container_end_page 243
container_issue 1
container_start_page 235
container_title
container_volume 61
creator Johnson, David U.
Mitchell, Reginald E.
Gür, Turgut M.
description Carbon fuel cells (CFCs) offer promising technological opportunities for efficient and clean conversion of carbonaceous fuel (coal, biomass, waste, etc.) into electricity. In this study, we report the results of a finite-element model used to predict the performance of a solid oxide-based tubular air carbon fuel cell (ACFC). The comprehensive model couples mass and energy transport with electrochemistry and ion transport, and uses experimentally derived parameters to simulate anode and cathode kinetics as well as carbon bed chemistry. The model is used to map out power density and cell efficiency as a function of bed height, tube spacing and cell voltage. The model results can be used to aid design and operational decisions. As expected, calculations of ACFC performance indicate the typical tradeoff between power density and cell efficiency under both varying geometry as well as varying cell voltage. Calculated results demonstrate that a power density of 170 mW/cm2 can be attained with a cell efficiency in excess of 50%.
doi_str_mv 10.1149/06101.0235ecst
format conference_proceeding
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_06101_0235ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/06101.0235ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-e772d898aca30efa5806f53f2eccdeaa44fdc09eeff4d6dbee02706747abfece3</originalsourceid><addsrcrecordid>eNp1j81LxDAUxIMouK5ePecstOarSXuU4rrCintYzyFNXqRLbJakRfzvre569PSGx8wwP4RuKSkpFc09kZTQkjBegc3jGVrQhteFVFydn3RVS3aJrnLek9lMhVog9RIdhH54x9v4CQlvU3STHfs44H7ABu-mbgom4dakbv6tJgi4hRCu0YU3IcPN6S7R2-px166LzevTc_uwKSxTYixAKebqpjbWcALeVDWRvuKegbUOjBHCO0saAO-Fk64DIEwRqYQynQcLfInKY69NMecEXh9S_2HSl6ZE_2DrX2z9hz0H7o6BPh70Pk5pmOf9Z_4GCJpZ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling Power Production in a Tubular Carbon Fuel Cell</title><source>Institute of Physics</source><creator>Johnson, David U. ; Mitchell, Reginald E. ; Gür, Turgut M.</creator><creatorcontrib>Johnson, David U. ; Mitchell, Reginald E. ; Gür, Turgut M.</creatorcontrib><description>Carbon fuel cells (CFCs) offer promising technological opportunities for efficient and clean conversion of carbonaceous fuel (coal, biomass, waste, etc.) into electricity. In this study, we report the results of a finite-element model used to predict the performance of a solid oxide-based tubular air carbon fuel cell (ACFC). The comprehensive model couples mass and energy transport with electrochemistry and ion transport, and uses experimentally derived parameters to simulate anode and cathode kinetics as well as carbon bed chemistry. The model is used to map out power density and cell efficiency as a function of bed height, tube spacing and cell voltage. The model results can be used to aid design and operational decisions. As expected, calculations of ACFC performance indicate the typical tradeoff between power density and cell efficiency under both varying geometry as well as varying cell voltage. Calculated results demonstrate that a power density of 170 mW/cm2 can be attained with a cell efficiency in excess of 50%.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/06101.0235ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2014, Vol.61 (1), p.235-243</ispartof><rights>2014 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-e772d898aca30efa5806f53f2eccdeaa44fdc09eeff4d6dbee02706747abfece3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnson, David U.</creatorcontrib><creatorcontrib>Mitchell, Reginald E.</creatorcontrib><creatorcontrib>Gür, Turgut M.</creatorcontrib><title>Modeling Power Production in a Tubular Carbon Fuel Cell</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>Carbon fuel cells (CFCs) offer promising technological opportunities for efficient and clean conversion of carbonaceous fuel (coal, biomass, waste, etc.) into electricity. In this study, we report the results of a finite-element model used to predict the performance of a solid oxide-based tubular air carbon fuel cell (ACFC). The comprehensive model couples mass and energy transport with electrochemistry and ion transport, and uses experimentally derived parameters to simulate anode and cathode kinetics as well as carbon bed chemistry. The model is used to map out power density and cell efficiency as a function of bed height, tube spacing and cell voltage. The model results can be used to aid design and operational decisions. As expected, calculations of ACFC performance indicate the typical tradeoff between power density and cell efficiency under both varying geometry as well as varying cell voltage. Calculated results demonstrate that a power density of 170 mW/cm2 can be attained with a cell efficiency in excess of 50%.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp1j81LxDAUxIMouK5ePecstOarSXuU4rrCintYzyFNXqRLbJakRfzvre569PSGx8wwP4RuKSkpFc09kZTQkjBegc3jGVrQhteFVFydn3RVS3aJrnLek9lMhVog9RIdhH54x9v4CQlvU3STHfs44H7ABu-mbgom4dakbv6tJgi4hRCu0YU3IcPN6S7R2-px166LzevTc_uwKSxTYixAKebqpjbWcALeVDWRvuKegbUOjBHCO0saAO-Fk64DIEwRqYQynQcLfInKY69NMecEXh9S_2HSl6ZE_2DrX2z9hz0H7o6BPh70Pk5pmOf9Z_4GCJpZ0A</recordid><startdate>20140324</startdate><enddate>20140324</enddate><creator>Johnson, David U.</creator><creator>Mitchell, Reginald E.</creator><creator>Gür, Turgut M.</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140324</creationdate><title>Modeling Power Production in a Tubular Carbon Fuel Cell</title><author>Johnson, David U. ; Mitchell, Reginald E. ; Gür, Turgut M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-e772d898aca30efa5806f53f2eccdeaa44fdc09eeff4d6dbee02706747abfece3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Johnson, David U.</creatorcontrib><creatorcontrib>Mitchell, Reginald E.</creatorcontrib><creatorcontrib>Gür, Turgut M.</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, David U.</au><au>Mitchell, Reginald E.</au><au>Gür, Turgut M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling Power Production in a Tubular Carbon Fuel Cell</atitle><btitle>ECS transactions</btitle><addtitle>ECS Trans</addtitle><date>2014-03-24</date><risdate>2014</risdate><volume>61</volume><issue>1</issue><spage>235</spage><epage>243</epage><pages>235-243</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>Carbon fuel cells (CFCs) offer promising technological opportunities for efficient and clean conversion of carbonaceous fuel (coal, biomass, waste, etc.) into electricity. In this study, we report the results of a finite-element model used to predict the performance of a solid oxide-based tubular air carbon fuel cell (ACFC). The comprehensive model couples mass and energy transport with electrochemistry and ion transport, and uses experimentally derived parameters to simulate anode and cathode kinetics as well as carbon bed chemistry. The model is used to map out power density and cell efficiency as a function of bed height, tube spacing and cell voltage. The model results can be used to aid design and operational decisions. As expected, calculations of ACFC performance indicate the typical tradeoff between power density and cell efficiency under both varying geometry as well as varying cell voltage. Calculated results demonstrate that a power density of 170 mW/cm2 can be attained with a cell efficiency in excess of 50%.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/06101.0235ecst</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2014, Vol.61 (1), p.235-243
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_06101_0235ecst
source Institute of Physics
title Modeling Power Production in a Tubular Carbon Fuel Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20Power%20Production%20in%20a%20Tubular%20Carbon%20Fuel%20Cell&rft.btitle=ECS%20transactions&rft.au=Johnson,%20David%20U.&rft.date=2014-03-24&rft.volume=61&rft.issue=1&rft.spage=235&rft.epage=243&rft.pages=235-243&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/06101.0235ecst&rft_dat=%3Ciop_cross%3E10.1149/06101.0235ecst%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-e772d898aca30efa5806f53f2eccdeaa44fdc09eeff4d6dbee02706747abfece3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true