Loading…
Electrochemical Determination of Metronidazole Using a Glassy Carbon Electrode Modified with Nanoporous Bimetallic Carbon Derived from a ZnCo-Based Metal-Organic Framework
ZnCo-based metal-organic frameworks (MOFs) based on ZIF-8 and ZIF-67 were synthesized at room temperature. Direct carbonization of the ZnCo-MOF under nitrogen atmosphere produced a nanoporous ZnCo/C composite which exhibited a large surface area (1111.499 m2∙g−1) and narrow pore-size distribution (1...
Saved in:
Published in: | Journal of the Electrochemical Society 2020-01, Vol.167 (11), p.116513 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnCo-based metal-organic frameworks (MOFs) based on ZIF-8 and ZIF-67 were synthesized at room temperature. Direct carbonization of the ZnCo-MOF under nitrogen atmosphere produced a nanoporous ZnCo/C composite which exhibited a large surface area (1111.499 m2∙g−1) and narrow pore-size distribution (1 ∼ 2 nm). A glassy carbon electrode was modified with the nanoporous ZnCo/C and Nafion for the electrochemical determination of the antibiotic metronidazole by linear sweep voltammetry. Under optimal conditions, the reduction peak current (observed at −0.66 V vs Ag/AgCl) increased linearly with increasing metronidazole concentration in the range of 0.05-100 M, with a detection limit estimated at 17 nM. These results are attributed to the large surface area, porous structure, high nitrogen content, and synergistic effects of the Zn and Co constituents. The sensor was satisfactorily used for metronidazole analysis in pharmaceutical samples. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1945-7111/ab9d94 |