Loading…

Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate

Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechani...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2024-03, Vol.171 (3), p.34501
Main Authors: Dauda, Monsuru, Hendershot, John, Bello, Mustapha, Park, Junghyun, Loaiza Orduz, Alvaro, Lombardo, Nicholas, Kizilkaya, Orhan, Sprunger, Phillip, Engler, Anthony, Plaisance, Craig, Flake, John
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13
container_end_page
container_issue 3
container_start_page 34501
container_title Journal of the Electrochemical Society
container_volume 171
creator Dauda, Monsuru
Hendershot, John
Bello, Mustapha
Park, Junghyun
Loaiza Orduz, Alvaro
Lombardo, Nicholas
Kizilkaya, Orhan
Sprunger, Phillip
Engler, Anthony
Plaisance, Craig
Flake, John
description Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechanisms for C 2 product selectivity are not well established. This work considers selectivity trends of Cu-P 0.065 , Cu-Sn 0.03 , and Cu 2 Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P 0.065 electrocatalysts (Cu δ + = 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm −2 ) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm −2 ) at the same current density. The primary CO 2 reduction product at Cu-Sn 0.03 (Cu δ + = 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm −2 ) while CO 2 reduction at Cu 2 Se (Cu δ + = 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm −2 ). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge ( δ + ) of Cu reaction sites.
doi_str_mv 10.1149/1945-7111/ad2cc1
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ad2cc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1945_7111_ad2cc1</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</originalsourceid><addsrcrecordid>eNqdT0sKwjAUDKJg_exdvgNYm6f1u5NScaeIC3chxFdaSRtJ4qK316p4AFfzYQZmGBshnyDG6wjX8TxcImIkr1OlsMWCn9VmAec4C-PFHLus59ztJXEVLwN2STUpb43KqSyU1HCi60P5wlRgMkgOMIUNbCExZfmytop8reEofQ7eQOrzWlNF44bJymgw9p2Rngask0ntaPjFPuO79JzsQ2WNc5YycbdFKW0tkIvmgWjmimau-DyY_VF5AgF-Teg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</creator><creatorcontrib>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</creatorcontrib><description>Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechanisms for C 2 product selectivity are not well established. This work considers selectivity trends of Cu-P 0.065 , Cu-Sn 0.03 , and Cu 2 Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P 0.065 electrocatalysts (Cu δ + = 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm −2 ) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm −2 ) at the same current density. The primary CO 2 reduction product at Cu-Sn 0.03 (Cu δ + = 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm −2 ) while CO 2 reduction at Cu 2 Se (Cu δ + = 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm −2 ). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge ( δ + ) of Cu reaction sites.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad2cc1</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2024-03, Vol.171 (3), p.34501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</cites><orcidid>0000-0002-9187-3143 ; 0000-0001-7607-2156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dauda, Monsuru</creatorcontrib><creatorcontrib>Hendershot, John</creatorcontrib><creatorcontrib>Bello, Mustapha</creatorcontrib><creatorcontrib>Park, Junghyun</creatorcontrib><creatorcontrib>Loaiza Orduz, Alvaro</creatorcontrib><creatorcontrib>Lombardo, Nicholas</creatorcontrib><creatorcontrib>Kizilkaya, Orhan</creatorcontrib><creatorcontrib>Sprunger, Phillip</creatorcontrib><creatorcontrib>Engler, Anthony</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><title>Journal of the Electrochemical Society</title><description>Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechanisms for C 2 product selectivity are not well established. This work considers selectivity trends of Cu-P 0.065 , Cu-Sn 0.03 , and Cu 2 Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P 0.065 electrocatalysts (Cu δ + = 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm −2 ) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm −2 ) at the same current density. The primary CO 2 reduction product at Cu-Sn 0.03 (Cu δ + = 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm −2 ) while CO 2 reduction at Cu 2 Se (Cu δ + = 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm −2 ). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge ( δ + ) of Cu reaction sites.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdT0sKwjAUDKJg_exdvgNYm6f1u5NScaeIC3chxFdaSRtJ4qK316p4AFfzYQZmGBshnyDG6wjX8TxcImIkr1OlsMWCn9VmAec4C-PFHLus59ztJXEVLwN2STUpb43KqSyU1HCi60P5wlRgMkgOMIUNbCExZfmytop8reEofQ7eQOrzWlNF44bJymgw9p2Rngask0ntaPjFPuO79JzsQ2WNc5YycbdFKW0tkIvmgWjmimau-DyY_VF5AgF-Teg</recordid><startdate>20240331</startdate><enddate>20240331</enddate><creator>Dauda, Monsuru</creator><creator>Hendershot, John</creator><creator>Bello, Mustapha</creator><creator>Park, Junghyun</creator><creator>Loaiza Orduz, Alvaro</creator><creator>Lombardo, Nicholas</creator><creator>Kizilkaya, Orhan</creator><creator>Sprunger, Phillip</creator><creator>Engler, Anthony</creator><creator>Plaisance, Craig</creator><creator>Flake, John</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0001-7607-2156</orcidid></search><sort><creationdate>20240331</creationdate><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><author>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauda, Monsuru</creatorcontrib><creatorcontrib>Hendershot, John</creatorcontrib><creatorcontrib>Bello, Mustapha</creatorcontrib><creatorcontrib>Park, Junghyun</creatorcontrib><creatorcontrib>Loaiza Orduz, Alvaro</creatorcontrib><creatorcontrib>Lombardo, Nicholas</creatorcontrib><creatorcontrib>Kizilkaya, Orhan</creatorcontrib><creatorcontrib>Sprunger, Phillip</creatorcontrib><creatorcontrib>Engler, Anthony</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauda, Monsuru</au><au>Hendershot, John</au><au>Bello, Mustapha</au><au>Park, Junghyun</au><au>Loaiza Orduz, Alvaro</au><au>Lombardo, Nicholas</au><au>Kizilkaya, Orhan</au><au>Sprunger, Phillip</au><au>Engler, Anthony</au><au>Plaisance, Craig</au><au>Flake, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2024-03-31</date><risdate>2024</risdate><volume>171</volume><issue>3</issue><spage>34501</spage><pages>34501-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechanisms for C 2 product selectivity are not well established. This work considers selectivity trends of Cu-P 0.065 , Cu-Sn 0.03 , and Cu 2 Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P 0.065 electrocatalysts (Cu δ + = 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm −2 ) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm −2 ) at the same current density. The primary CO 2 reduction product at Cu-Sn 0.03 (Cu δ + = 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm −2 ) while CO 2 reduction at Cu 2 Se (Cu δ + = 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm −2 ). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge ( δ + ) of Cu reaction sites.</abstract><doi>10.1149/1945-7111/ad2cc1</doi><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0001-7607-2156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2024-03, Vol.171 (3), p.34501
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1945_7111_ad2cc1
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Reduction%20of%20CO%202%20:%20A%20Common%20Acetyl%20Path%20to%20Ethylene,%20Ethanol%20or%20Acetate&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Dauda,%20Monsuru&rft.date=2024-03-31&rft.volume=171&rft.issue=3&rft.spage=34501&rft.pages=34501-&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/1945-7111/ad2cc1&rft_dat=%3Ccrossref%3E10_1149_1945_7111_ad2cc1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true