Loading…
Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate
Ethylene is well known as the primary product of CO 2 reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C 2 oxygenates; however, the mechani...
Saved in:
Published in: | Journal of the Electrochemical Society 2024-03, Vol.171 (3), p.34501 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13 |
container_end_page | |
container_issue | 3 |
container_start_page | 34501 |
container_title | Journal of the Electrochemical Society |
container_volume | 171 |
creator | Dauda, Monsuru Hendershot, John Bello, Mustapha Park, Junghyun Loaiza Orduz, Alvaro Lombardo, Nicholas Kizilkaya, Orhan Sprunger, Phillip Engler, Anthony Plaisance, Craig Flake, John |
description | Ethylene is well known as the primary product of CO
2
reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C
2
oxygenates; however, the mechanisms for C
2
product selectivity are not well established. This work considers selectivity trends of Cu-P
0.065
, Cu-Sn
0.03
, and Cu
2
Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P
0.065
electrocatalysts (Cu
δ
+
= 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm
−2
) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm
−2
) at the same current density. The primary CO
2
reduction product at Cu-Sn
0.03
(Cu
δ
+
= 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm
−2
) while CO
2
reduction at Cu
2
Se (Cu
δ
+
= 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm
−2
). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (
δ
+
) of Cu reaction sites. |
doi_str_mv | 10.1149/1945-7111/ad2cc1 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ad2cc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1945_7111_ad2cc1</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</originalsourceid><addsrcrecordid>eNqdT0sKwjAUDKJg_exdvgNYm6f1u5NScaeIC3chxFdaSRtJ4qK316p4AFfzYQZmGBshnyDG6wjX8TxcImIkr1OlsMWCn9VmAec4C-PFHLus59ztJXEVLwN2STUpb43KqSyU1HCi60P5wlRgMkgOMIUNbCExZfmytop8reEofQ7eQOrzWlNF44bJymgw9p2Rngask0ntaPjFPuO79JzsQ2WNc5YycbdFKW0tkIvmgWjmimau-DyY_VF5AgF-Teg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</creator><creatorcontrib>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</creatorcontrib><description>Ethylene is well known as the primary product of CO
2
reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C
2
oxygenates; however, the mechanisms for C
2
product selectivity are not well established. This work considers selectivity trends of Cu-P
0.065
, Cu-Sn
0.03
, and Cu
2
Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P
0.065
electrocatalysts (Cu
δ
+
= 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm
−2
) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm
−2
) at the same current density. The primary CO
2
reduction product at Cu-Sn
0.03
(Cu
δ
+
= 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm
−2
) while CO
2
reduction at Cu
2
Se (Cu
δ
+
= 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm
−2
). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (
δ
+
) of Cu reaction sites.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad2cc1</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2024-03, Vol.171 (3), p.34501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</cites><orcidid>0000-0002-9187-3143 ; 0000-0001-7607-2156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dauda, Monsuru</creatorcontrib><creatorcontrib>Hendershot, John</creatorcontrib><creatorcontrib>Bello, Mustapha</creatorcontrib><creatorcontrib>Park, Junghyun</creatorcontrib><creatorcontrib>Loaiza Orduz, Alvaro</creatorcontrib><creatorcontrib>Lombardo, Nicholas</creatorcontrib><creatorcontrib>Kizilkaya, Orhan</creatorcontrib><creatorcontrib>Sprunger, Phillip</creatorcontrib><creatorcontrib>Engler, Anthony</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><title>Journal of the Electrochemical Society</title><description>Ethylene is well known as the primary product of CO
2
reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C
2
oxygenates; however, the mechanisms for C
2
product selectivity are not well established. This work considers selectivity trends of Cu-P
0.065
, Cu-Sn
0.03
, and Cu
2
Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P
0.065
electrocatalysts (Cu
δ
+
= 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm
−2
) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm
−2
) at the same current density. The primary CO
2
reduction product at Cu-Sn
0.03
(Cu
δ
+
= 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm
−2
) while CO
2
reduction at Cu
2
Se (Cu
δ
+
= 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm
−2
). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (
δ
+
) of Cu reaction sites.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdT0sKwjAUDKJg_exdvgNYm6f1u5NScaeIC3chxFdaSRtJ4qK316p4AFfzYQZmGBshnyDG6wjX8TxcImIkr1OlsMWCn9VmAec4C-PFHLus59ztJXEVLwN2STUpb43KqSyU1HCi60P5wlRgMkgOMIUNbCExZfmytop8reEofQ7eQOrzWlNF44bJymgw9p2Rngask0ntaPjFPuO79JzsQ2WNc5YycbdFKW0tkIvmgWjmimau-DyY_VF5AgF-Teg</recordid><startdate>20240331</startdate><enddate>20240331</enddate><creator>Dauda, Monsuru</creator><creator>Hendershot, John</creator><creator>Bello, Mustapha</creator><creator>Park, Junghyun</creator><creator>Loaiza Orduz, Alvaro</creator><creator>Lombardo, Nicholas</creator><creator>Kizilkaya, Orhan</creator><creator>Sprunger, Phillip</creator><creator>Engler, Anthony</creator><creator>Plaisance, Craig</creator><creator>Flake, John</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0001-7607-2156</orcidid></search><sort><creationdate>20240331</creationdate><title>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</title><author>Dauda, Monsuru ; Hendershot, John ; Bello, Mustapha ; Park, Junghyun ; Loaiza Orduz, Alvaro ; Lombardo, Nicholas ; Kizilkaya, Orhan ; Sprunger, Phillip ; Engler, Anthony ; Plaisance, Craig ; Flake, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauda, Monsuru</creatorcontrib><creatorcontrib>Hendershot, John</creatorcontrib><creatorcontrib>Bello, Mustapha</creatorcontrib><creatorcontrib>Park, Junghyun</creatorcontrib><creatorcontrib>Loaiza Orduz, Alvaro</creatorcontrib><creatorcontrib>Lombardo, Nicholas</creatorcontrib><creatorcontrib>Kizilkaya, Orhan</creatorcontrib><creatorcontrib>Sprunger, Phillip</creatorcontrib><creatorcontrib>Engler, Anthony</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><creatorcontrib>Flake, John</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauda, Monsuru</au><au>Hendershot, John</au><au>Bello, Mustapha</au><au>Park, Junghyun</au><au>Loaiza Orduz, Alvaro</au><au>Lombardo, Nicholas</au><au>Kizilkaya, Orhan</au><au>Sprunger, Phillip</au><au>Engler, Anthony</au><au>Plaisance, Craig</au><au>Flake, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2024-03-31</date><risdate>2024</risdate><volume>171</volume><issue>3</issue><spage>34501</spage><pages>34501-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Ethylene is well known as the primary product of CO
2
reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C
2
oxygenates; however, the mechanisms for C
2
product selectivity are not well established. This work considers selectivity trends of Cu-P
0.065
, Cu-Sn
0.03
, and Cu
2
Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P
0.065
electrocatalysts (Cu
δ
+
= 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm
−2
) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm
−2
) at the same current density. The primary CO
2
reduction product at Cu-Sn
0.03
(Cu
δ
+
= 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm
−2
) while CO
2
reduction at Cu
2
Se (Cu
δ
+
= 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm
−2
). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (
δ
+
) of Cu reaction sites.</abstract><doi>10.1149/1945-7111/ad2cc1</doi><orcidid>https://orcid.org/0000-0002-9187-3143</orcidid><orcidid>https://orcid.org/0000-0001-7607-2156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2024-03, Vol.171 (3), p.34501 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_1945_7111_ad2cc1 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | Electrochemical Reduction of CO 2 : A Common Acetyl Path to Ethylene, Ethanol or Acetate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Reduction%20of%20CO%202%20:%20A%20Common%20Acetyl%20Path%20to%20Ethylene,%20Ethanol%20or%20Acetate&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Dauda,%20Monsuru&rft.date=2024-03-31&rft.volume=171&rft.issue=3&rft.spage=34501&rft.pages=34501-&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/1945-7111/ad2cc1&rft_dat=%3Ccrossref%3E10_1149_1945_7111_ad2cc1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1149_1945_7111_ad2cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |