Loading…

A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell

A finite volume based computational method for predicting two-phase flows in fuel cells is presented. The model formulation and numerical algorithms are selected to provide robustness and accuracy, while allowing the treatment of important phenomena relevant to fuel cell water management such as seg...

Full description

Saved in:
Bibliographic Details
Main Authors: Jain, Kunal, Cole, James Vernon, Kumar, Sanjiv, Gidwani, Ashok, Vaidya, N.
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c229t-50e6afb713d159499d47f568fa221d0e72777136c5c6875b22b3201178fcfb9d3
cites
container_end_page 56
container_issue 2
container_start_page 45
container_title
container_volume 16
creator Jain, Kunal
Cole, James Vernon
Kumar, Sanjiv
Gidwani, Ashok
Vaidya, N.
description A finite volume based computational method for predicting two-phase flows in fuel cells is presented. The model formulation and numerical algorithms are selected to provide robustness and accuracy, while allowing the treatment of important phenomena relevant to fuel cell water management such as segregation of the phases to form films and slugs in gas channels. Variations in the algorithms for computing pressure corrections and phase fractions are assessed using water-air flows in fuel cell channel geometries. The accuracy of the model is evaluated by comparison to benchmark simulations, measured pressure drop data for air-water flows, and analytical solutions for capillary pressure in porous media. The results indicate that the selected formulation is sufficiently stable and accurate to serve as the basis for a detailed model of water transport in fuel cells.
doi_str_mv 10.1149/1.2981842
format conference_proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_2981842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_2981842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-50e6afb713d159499d47f568fa221d0e72777136c5c6875b22b3201178fcfb9d3</originalsourceid><addsrcrecordid>eNotj81KxDAYRYMoOI4ufINsBTvmS5q_5VCnKkzRRcVlSZsEK3Fakhbx7afirO6Fe7hwELoFsgHI9QNsqFagcnqGVqCZyoRk8vzUuRL0El2l9EWIWHC5Qo9bXM1h6sdPk9w9rn-GrAxzb3E1WBewHyL-MJOLuI7mkMYhTrg_YIPfdhUu54UoXAjX6MKbkNzNKdfovdzVxXO2f316Kbb7rKNUTxknThjfSmAWuM61trn0XChvKAVLnKRSLqPoeCeU5C2lLaMEQCrf-VZbtkZ3_79dHFKKzjdj7L9N_G2ANH_6DTQnfXYE5kdJ0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell</title><source>Institute of Physics</source><creator>Jain, Kunal ; Cole, James Vernon ; Kumar, Sanjiv ; Gidwani, Ashok ; Vaidya, N.</creator><creatorcontrib>Jain, Kunal ; Cole, James Vernon ; Kumar, Sanjiv ; Gidwani, Ashok ; Vaidya, N.</creatorcontrib><description>A finite volume based computational method for predicting two-phase flows in fuel cells is presented. The model formulation and numerical algorithms are selected to provide robustness and accuracy, while allowing the treatment of important phenomena relevant to fuel cell water management such as segregation of the phases to form films and slugs in gas channels. Variations in the algorithms for computing pressure corrections and phase fractions are assessed using water-air flows in fuel cell channel geometries. The accuracy of the model is evaluated by comparison to benchmark simulations, measured pressure drop data for air-water flows, and analytical solutions for capillary pressure in porous media. The results indicate that the selected formulation is sufficiently stable and accurate to serve as the basis for a detailed model of water transport in fuel cells.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/1.2981842</identifier><language>eng</language><ispartof>ECS transactions, 2009, Vol.16 (2), p.45-56</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-50e6afb713d159499d47f568fa221d0e72777136c5c6875b22b3201178fcfb9d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Jain, Kunal</creatorcontrib><creatorcontrib>Cole, James Vernon</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Gidwani, Ashok</creatorcontrib><creatorcontrib>Vaidya, N.</creatorcontrib><title>A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell</title><title>ECS transactions</title><description>A finite volume based computational method for predicting two-phase flows in fuel cells is presented. The model formulation and numerical algorithms are selected to provide robustness and accuracy, while allowing the treatment of important phenomena relevant to fuel cell water management such as segregation of the phases to form films and slugs in gas channels. Variations in the algorithms for computing pressure corrections and phase fractions are assessed using water-air flows in fuel cell channel geometries. The accuracy of the model is evaluated by comparison to benchmark simulations, measured pressure drop data for air-water flows, and analytical solutions for capillary pressure in porous media. The results indicate that the selected formulation is sufficiently stable and accurate to serve as the basis for a detailed model of water transport in fuel cells.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj81KxDAYRYMoOI4ufINsBTvmS5q_5VCnKkzRRcVlSZsEK3Fakhbx7afirO6Fe7hwELoFsgHI9QNsqFagcnqGVqCZyoRk8vzUuRL0El2l9EWIWHC5Qo9bXM1h6sdPk9w9rn-GrAxzb3E1WBewHyL-MJOLuI7mkMYhTrg_YIPfdhUu54UoXAjX6MKbkNzNKdfovdzVxXO2f316Kbb7rKNUTxknThjfSmAWuM61trn0XChvKAVLnKRSLqPoeCeU5C2lLaMEQCrf-VZbtkZ3_79dHFKKzjdj7L9N_G2ANH_6DTQnfXYE5kdJ0g</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Jain, Kunal</creator><creator>Cole, James Vernon</creator><creator>Kumar, Sanjiv</creator><creator>Gidwani, Ashok</creator><creator>Vaidya, N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2009</creationdate><title>A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell</title><author>Jain, Kunal ; Cole, James Vernon ; Kumar, Sanjiv ; Gidwani, Ashok ; Vaidya, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-50e6afb713d159499d47f568fa221d0e72777136c5c6875b22b3201178fcfb9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jain, Kunal</creatorcontrib><creatorcontrib>Cole, James Vernon</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Gidwani, Ashok</creatorcontrib><creatorcontrib>Vaidya, N.</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Kunal</au><au>Cole, James Vernon</au><au>Kumar, Sanjiv</au><au>Gidwani, Ashok</au><au>Vaidya, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell</atitle><btitle>ECS transactions</btitle><date>2009</date><risdate>2009</risdate><volume>16</volume><issue>2</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>A finite volume based computational method for predicting two-phase flows in fuel cells is presented. The model formulation and numerical algorithms are selected to provide robustness and accuracy, while allowing the treatment of important phenomena relevant to fuel cell water management such as segregation of the phases to form films and slugs in gas channels. Variations in the algorithms for computing pressure corrections and phase fractions are assessed using water-air flows in fuel cell channel geometries. The accuracy of the model is evaluated by comparison to benchmark simulations, measured pressure drop data for air-water flows, and analytical solutions for capillary pressure in porous media. The results indicate that the selected formulation is sufficiently stable and accurate to serve as the basis for a detailed model of water transport in fuel cells.</abstract><doi>10.1149/1.2981842</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2009, Vol.16 (2), p.45-56
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_1_2981842
source Institute of Physics
title A Multiphase, Two-Fluid Model for Water Transport in a PEM Fuel Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multiphase,%20Two-Fluid%20Model%20for%20Water%20Transport%20in%20a%20PEM%20Fuel%20Cell&rft.btitle=ECS%20transactions&rft.au=Jain,%20Kunal&rft.date=2009&rft.volume=16&rft.issue=2&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/1.2981842&rft_dat=%3Ccrossref%3E10_1149_1_2981842%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c229t-50e6afb713d159499d47f568fa221d0e72777136c5c6875b22b3201178fcfb9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true