Loading…
(Invited) High Speed Copper Electrodeposition for Through Silicon Via(TSV)
High-speed copper electrodeposition is needed to optimize the TSV process with a high throughput. To inhibit electrodeposition on the top surface of the TSV, the ODT was microcontact-printed on the top surface. The ODT microcontact-printing effectively inhibits the copper electrodepositon on the top...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-speed copper electrodeposition is needed to optimize the TSV process with a high throughput. To inhibit electrodeposition on the top surface of the TSV, the ODT was microcontact-printed on the top surface. The ODT microcontact-printing effectively inhibits the copper electrodepositon on the top surface. With 1.0 ppm SDDACC, V-shapes were formed in the via cross sections and these shapes lead to bottom-up via filling [1]. Without micro-contact-printing, and with 1.5 ppm SDDACC, V-shapes were again formed in the via cross sections and these shapes lead to bottom-up via filling. We succeeded in filling 10 μm diameter and 70 μm deep vias within 35 minutes without micro- contact-printing. This was achieved by optimizing the SDDACC concentration with CVS measurements. The inhibition layer of the micro-contact-printing does not speed up the TSV electrodeposition. The most important factor to speed up the TSV electrodeposition is optimization of the additives. |
---|---|
ISSN: | 1938-5862 1938-6737 |
DOI: | 10.1149/1.4717502 |