Loading…

Construction of High-Performance Amperometric Acetaminophen Sensors Using Zn/ZnO-Decorated Reduced Graphene Oxide Surfaces

Sensitive and selective monitoring of acetaminophen (APAP), which is small but an important molecule used to relieve pain and inflammation, is of great importance in pharmacy. This study reports the development of zinc (Zn)/zinc oxide (ZnO)/reduced graphene oxide (rGO)-based electrochemical APAP sen...

Full description

Saved in:
Bibliographic Details
Published in:ECS journal of solid state science and technology 2020-06, Vol.9 (9), p.93003
Main Authors: Ozcan, Merve, Basak, Adem, Uzunoglu, Aytekin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sensitive and selective monitoring of acetaminophen (APAP), which is small but an important molecule used to relieve pain and inflammation, is of great importance in pharmacy. This study reports the development of zinc (Zn)/zinc oxide (ZnO)/reduced graphene oxide (rGO)-based electrochemical APAP sensors with a high sensitivity in a wide linear range. The Zn/ZnO/rGO nanohybrids were synthesized using a facile chemical precipitation method. The Zn and ZnO nanoparticles were anchored on the surface of rGO simultaneously. The XRD and TEM results indicated the presence of Zn and ZnO nanoparticles on the rGO surface, which was also confirmed by XPS and TGA analyses. The electrochemical performance of the sensors was investigated using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The electrochemical performance results showed that the sensors had a high sensitivity of 166.5 6 A.mM−1.cm−2 in the linear range between 0.05 to 2 mM, which is considerably wide compared to the literature. Overall, the Zn/ZnO/rGO nanohybrids displayed a great promise to be employed in the development of electrochemical APAP sensors due to their a high sensitivity, wide working window, excellent fabrication reproducibility, good storage stability, selectivity, and real sample analysis results.
ISSN:2162-8769
2162-8777
DOI:10.1149/2162-8777/ab951b