Loading…
PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries
The application areas of rechargeable Li-ion batteries continue to grow, hence improvement in their energy density, rate capability and cycle life is necessary. A typical cathode contains usually redox active transition metal oxides as active materials, conductive additives to ensure electronic cond...
Saved in:
Published in: | Journal of the Electrochemical Society 2015-01, Vol.162 (4), p.A674-A678 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application areas of rechargeable Li-ion batteries continue to grow, hence improvement in their energy density, rate capability and cycle life is necessary. A typical cathode contains usually redox active transition metal oxides as active materials, conductive additives to ensure electronic conductivity and binder supporting matrix. In this work we report the behavior and properties of carbon black free LiFePO4 composite electrode, where poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is accomplishing a dual role of binder and conducting additive. The effect of the polymer amount on the morphometric properties of the electrodes was studied using SEM, mercury porosimetry and high resolution X-ray computed tomography. The electrochemical performance and the cycling stability of the composite electrodes were compared to the behavior of conventional cathodes with carbon additives and PVDF binder. With increasing PEDOT:PSS content a decrease in the overvoltage and correspondingly an improvement in the rate capability is observed. Composite cathodes containing 8% PEDOT:PSS show comparable electrode capacity and better cyclic stability than conventional composite cathode. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0581504jes |