Loading…
Perturbations in intracellular Ca 2+ handling in skeletal muscle in the G93ASOD1 mouse model of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by skeletal muscle atrophy and weakness, ultimately leading to respiratory failure. The purpose of this study was to assess changes in skeletal muscle excitation-contraction (E-C) coupling and intracellular...
Saved in:
Published in: | American Journal of Physiology: Cell Physiology 2014-12, Vol.307 (11), p.C1031-C1038 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by skeletal muscle atrophy and weakness, ultimately leading to respiratory failure. The purpose of this study was to assess changes in skeletal muscle excitation-contraction (E-C) coupling and intracellular Ca
2+
handling during disease progression in the G93A*SOD1 ALS transgenic (ALS Tg) mouse model. To assess E-C coupling, single muscle fibers were electrically stimulated (10–150 Hz), and intracellular free Ca
2+
concentration was assessed using fura-2. There were no differences in peak fura-2 ratio at any stimulation frequency at 70 days (early presymptomatic). However, at 90 days (late presymptomatic) and 120–140 days (symptomatic), fura-2 ratio was increased at 10 Hz in ALS Tg compared with wild-type (WT) fibers (0.670 ± 0.02 vs. 0.585 ± 0.02 for 120–140 days; P < 0.05). There was also a significant increase in resting fura-2 ratio at 90 days (0.351 ± 0.008 vs. 0.390 ± 0.009 in WT vs. ALS Tg; P < 0.05) and 120–140 days (0.374 ± 0.001 vs. 0.415 ± 0.003 in WT vs. ALS Tg; P < 0.05). These increases in intracellular Ca
2+
in ALS Tg muscle were associated with reductions in the sarcoplasmic/endoplasmic reticulum Ca
2+
ATPase proteins SERCA1 (to 54% and 19% of WT) and SERCA2 (to 56% and 11% of WT) and parvalbumin (to 80 and 62% of WT) in gastrocnemius muscle at 90 and 120–140 days, respectively. There was no change in dihydropyridine receptor/l-type Ca
2+
channel at any age. Overall, these data demonstrate minimal changes in electrically evoked Ca
2+
transients but elevations in intracellular Ca
2+
attributable to decreased Ca
2+
-clearance proteins. These data suggest that elevations in cellular Ca
2+
could contribute to muscle weakness during disease progression in ALS mice. |
---|---|
ISSN: | 0363-6143 1522-1563 |
DOI: | 10.1152/ajpcell.00237.2013 |