Loading…
Effect of healthy aging on cerebral blood flow, CO 2 reactivity, and neurovascular coupling during exercise
We sought to make the first comparisons of duplex Doppler ultrasonography-derived measures of cerebral blood flow during exercise in young and older individuals and to assess whether healthy aging influences the effect of exercise on neurovascular coupling (NVC) and cerebral vascular reactivity to c...
Saved in:
Published in: | Journal of applied physiology (1985) 2018-12, Vol.125 (6), p.1917-1930 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We sought to make the first comparisons of duplex Doppler ultrasonography-derived measures of cerebral blood flow during exercise in young and older individuals and to assess whether healthy aging influences the effect of exercise on neurovascular coupling (NVC) and cerebral vascular reactivity to changes in carbon dioxide (CVRco
). In 10 healthy young (23 ± 2 yr; mean ± SD) and 9 healthy older (66 ± 3 yr) individuals, internal carotid artery (ICA) and vertebral artery (VA) blood flows were concurrently measured, along with middle and posterior cerebral artery mean blood velocity (MCAv
and PCAv
). Measures were made at rest and during leg cycling (75 W and 35% maximum aerobic workload). ICA and VA blood flow during dynamic exercise, undertaken at matched absolute (ICA: young 336 ± 95, older 352 ± 155; VA: young 95 ± 43, older 100 ± 30 ml/min) and relative (ICA: young 355 ± 125, older 323 ± 153; VA: young 115 ± 48, older 110 ± 32 ml/min) intensities, were not different between groups ( P > 0.670). The PCAv
responses to visual stimulation (NVC) were blunted in older versus younger group at rest (16 ± 6% vs. 23 ± 7%, P < 0.026) and exercise; however, these responses were not changed from rest to exercise in either group. The ICA and VA CVRco
were comparable in both groups and unaltered during exercise. Collectively, our findings suggest that 1) ICA and VA blood flow responses to dynamic exercise are similar in healthy young and older individuals, 2) NVC is blunted in healthy older individuals at rest and exercise but is not different between rest to exercise in either group, and 3) CVRco
is similar during exercise in healthy young and older groups. NEW & NOTEWORTHY Internal carotid artery and vertebral artery blood flow responses to dynamic exercise are similar in healthy young and older individuals. Neurovascular coupling and cerebrovascular carbon dioxide reactivity, two key mechanisms mediating the cerebral blood flow responses to exercise, are generally unaffected by exercise in both healthy young and older individuals. |
---|---|
ISSN: | 8750-7587 1522-1601 |
DOI: | 10.1152/japplphysiol.00050.2018 |