Loading…
Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis
For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only w...
Saved in:
Published in: | Journal of artificial evolution and applications 2008-01, Vol.2008 (1) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of artificial evolution and applications |
container_volume | 2008 |
creator | Poli, Riccardo |
description | For stochastic optimisation algorithms, knowing the probability distribution with which
an algorithm allocates new samples in the search space is very important, since this explains
how the algorithm really works and is a prerequisite to being able to match algorithms to
problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory.
Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a
mystery for the whole of the first decade of PSO research. In this paper, a method is presented
that allows one to exactly determine all the characteristics of a PSO′s sampling distribution
and explain how it changes over time during stagnation (i.e., while particles are in search for
a better personal best) for a large class of PSO′s. |
doi_str_mv | 10.1155/2008/761459 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2008_761459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2008_761459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKdX_oHcS10-lqS5HJtfMJkwvS5v00QjbVqSqPTf2zHx6hw4h8P7PghdU3JLqRALRki5UJIuhT5BMypLVUjG1em_Z_ocXaT0SYjknLEZMpsxQOdNwhAavM9Q-9bnEfcO5w-L99ANrQ_veONTjr7-yr4PU_gCMXvTToUfiB3eDdl3PtmY8LcH_Nx3NmS8CtCOyadLdOagTfbqT-fo7f7udf1YbHcPT-vVtjDT8bqwylFipC5FowAa4WqnGTAraq6WsmyEBgtGQ1lr1VAjuWDSLQW1spy-q4HP0c1x18Q-pWhdNUTfQRwrSqoDn-rApzry4b-mr1lW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><source>Wiley Open Access Journals</source><creator>Poli, Riccardo</creator><contributor>Blackwell, T.</contributor><creatorcontrib>Poli, Riccardo ; Blackwell, T.</creatorcontrib><description>For stochastic optimisation algorithms, knowing the probability distribution with which
an algorithm allocates new samples in the search space is very important, since this explains
how the algorithm really works and is a prerequisite to being able to match algorithms to
problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory.
Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a
mystery for the whole of the first decade of PSO research. In this paper, a method is presented
that allows one to exactly determine all the characteristics of a PSO′s sampling distribution
and explain how it changes over time during stagnation (i.e., while particles are in search for
a better personal best) for a large class of PSO′s.</description><identifier>ISSN: 1687-6229</identifier><identifier>EISSN: 1687-6237</identifier><identifier>DOI: 10.1155/2008/761459</identifier><language>eng</language><ispartof>Journal of artificial evolution and applications, 2008-01, Vol.2008 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</citedby><cites>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Blackwell, T.</contributor><creatorcontrib>Poli, Riccardo</creatorcontrib><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><title>Journal of artificial evolution and applications</title><description>For stochastic optimisation algorithms, knowing the probability distribution with which
an algorithm allocates new samples in the search space is very important, since this explains
how the algorithm really works and is a prerequisite to being able to match algorithms to
problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory.
Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a
mystery for the whole of the first decade of PSO research. In this paper, a method is presented
that allows one to exactly determine all the characteristics of a PSO′s sampling distribution
and explain how it changes over time during stagnation (i.e., while particles are in search for
a better personal best) for a large class of PSO′s.</description><issn>1687-6229</issn><issn>1687-6237</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKdX_oHcS10-lqS5HJtfMJkwvS5v00QjbVqSqPTf2zHx6hw4h8P7PghdU3JLqRALRki5UJIuhT5BMypLVUjG1em_Z_ocXaT0SYjknLEZMpsxQOdNwhAavM9Q-9bnEfcO5w-L99ANrQ_veONTjr7-yr4PU_gCMXvTToUfiB3eDdl3PtmY8LcH_Nx3NmS8CtCOyadLdOagTfbqT-fo7f7udf1YbHcPT-vVtjDT8bqwylFipC5FowAa4WqnGTAraq6WsmyEBgtGQ1lr1VAjuWDSLQW1spy-q4HP0c1x18Q-pWhdNUTfQRwrSqoDn-rApzry4b-mr1lW</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Poli, Riccardo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200801</creationdate><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><author>Poli, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poli, Riccardo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of artificial evolution and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poli, Riccardo</au><au>Blackwell, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</atitle><jtitle>Journal of artificial evolution and applications</jtitle><date>2008-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><issn>1687-6229</issn><eissn>1687-6237</eissn><abstract>For stochastic optimisation algorithms, knowing the probability distribution with which
an algorithm allocates new samples in the search space is very important, since this explains
how the algorithm really works and is a prerequisite to being able to match algorithms to
problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory.
Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a
mystery for the whole of the first decade of PSO research. In this paper, a method is presented
that allows one to exactly determine all the characteristics of a PSO′s sampling distribution
and explain how it changes over time during stagnation (i.e., while particles are in search for
a better personal best) for a large class of PSO′s.</abstract><doi>10.1155/2008/761459</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6229 |
ispartof | Journal of artificial evolution and applications, 2008-01, Vol.2008 (1) |
issn | 1687-6229 1687-6237 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2008_761459 |
source | Wiley Open Access Journals |
title | Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Stability%20of%20the%20Sampling%20Distribution%20ofParticle%20Swarm%20Optimisers%20via%20Moment%20Analysis&rft.jtitle=Journal%20of%20artificial%20evolution%20and%20applications&rft.au=Poli,%20Riccardo&rft.date=2008-01&rft.volume=2008&rft.issue=1&rft.issn=1687-6229&rft.eissn=1687-6237&rft_id=info:doi/10.1155/2008/761459&rft_dat=%3Ccrossref%3E10_1155_2008_761459%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |