Loading…

Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis

For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of artificial evolution and applications 2008-01, Vol.2008 (1)
Main Author: Poli, Riccardo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3
cites cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3
container_end_page
container_issue 1
container_start_page
container_title Journal of artificial evolution and applications
container_volume 2008
creator Poli, Riccardo
description For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory. Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a mystery for the whole of the first decade of PSO research. In this paper, a method is presented that allows one to exactly determine all the characteristics of a PSO′s sampling distribution and explain how it changes over time during stagnation (i.e., while particles are in search for a better personal best) for a large class of PSO′s.
doi_str_mv 10.1155/2008/761459
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2008_761459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2008_761459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKdX_oHcS10-lqS5HJtfMJkwvS5v00QjbVqSqPTf2zHx6hw4h8P7PghdU3JLqRALRki5UJIuhT5BMypLVUjG1em_Z_ocXaT0SYjknLEZMpsxQOdNwhAavM9Q-9bnEfcO5w-L99ANrQ_veONTjr7-yr4PU_gCMXvTToUfiB3eDdl3PtmY8LcH_Nx3NmS8CtCOyadLdOagTfbqT-fo7f7udf1YbHcPT-vVtjDT8bqwylFipC5FowAa4WqnGTAraq6WsmyEBgtGQ1lr1VAjuWDSLQW1spy-q4HP0c1x18Q-pWhdNUTfQRwrSqoDn-rApzry4b-mr1lW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><source>Wiley Open Access Journals</source><creator>Poli, Riccardo</creator><contributor>Blackwell, T.</contributor><creatorcontrib>Poli, Riccardo ; Blackwell, T.</creatorcontrib><description>For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory. Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a mystery for the whole of the first decade of PSO research. In this paper, a method is presented that allows one to exactly determine all the characteristics of a PSO′s sampling distribution and explain how it changes over time during stagnation (i.e., while particles are in search for a better personal best) for a large class of PSO′s.</description><identifier>ISSN: 1687-6229</identifier><identifier>EISSN: 1687-6237</identifier><identifier>DOI: 10.1155/2008/761459</identifier><language>eng</language><ispartof>Journal of artificial evolution and applications, 2008-01, Vol.2008 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</citedby><cites>FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Blackwell, T.</contributor><creatorcontrib>Poli, Riccardo</creatorcontrib><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><title>Journal of artificial evolution and applications</title><description>For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory. Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a mystery for the whole of the first decade of PSO research. In this paper, a method is presented that allows one to exactly determine all the characteristics of a PSO′s sampling distribution and explain how it changes over time during stagnation (i.e., while particles are in search for a better personal best) for a large class of PSO′s.</description><issn>1687-6229</issn><issn>1687-6237</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKdX_oHcS10-lqS5HJtfMJkwvS5v00QjbVqSqPTf2zHx6hw4h8P7PghdU3JLqRALRki5UJIuhT5BMypLVUjG1em_Z_ocXaT0SYjknLEZMpsxQOdNwhAavM9Q-9bnEfcO5w-L99ANrQ_veONTjr7-yr4PU_gCMXvTToUfiB3eDdl3PtmY8LcH_Nx3NmS8CtCOyadLdOagTfbqT-fo7f7udf1YbHcPT-vVtjDT8bqwylFipC5FowAa4WqnGTAraq6WsmyEBgtGQ1lr1VAjuWDSLQW1spy-q4HP0c1x18Q-pWhdNUTfQRwrSqoDn-rApzry4b-mr1lW</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Poli, Riccardo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200801</creationdate><title>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</title><author>Poli, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poli, Riccardo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of artificial evolution and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poli, Riccardo</au><au>Blackwell, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis</atitle><jtitle>Journal of artificial evolution and applications</jtitle><date>2008-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><issn>1687-6229</issn><eissn>1687-6237</eissn><abstract>For stochastic optimisation algorithms, knowing the probability distribution with which an algorithm allocates new samples in the search space is very important, since this explains how the algorithm really works and is a prerequisite to being able to match algorithms to problems. This is the only way to beat the limitations highlighted by the no‐free lunch theory. Yet, the sampling distribution for velocity‐based particle swarm optimisers has remained a mystery for the whole of the first decade of PSO research. In this paper, a method is presented that allows one to exactly determine all the characteristics of a PSO′s sampling distribution and explain how it changes over time during stagnation (i.e., while particles are in search for a better personal best) for a large class of PSO′s.</abstract><doi>10.1155/2008/761459</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6229
ispartof Journal of artificial evolution and applications, 2008-01, Vol.2008 (1)
issn 1687-6229
1687-6237
language eng
recordid cdi_crossref_primary_10_1155_2008_761459
source Wiley Open Access Journals
title Dynamics and Stability of the Sampling Distribution ofParticle Swarm Optimisers via Moment Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Stability%20of%20the%20Sampling%20Distribution%20ofParticle%20Swarm%20Optimisers%20via%20Moment%20Analysis&rft.jtitle=Journal%20of%20artificial%20evolution%20and%20applications&rft.au=Poli,%20Riccardo&rft.date=2008-01&rft.volume=2008&rft.issue=1&rft.issn=1687-6229&rft.eissn=1687-6237&rft_id=info:doi/10.1155/2008/761459&rft_dat=%3Ccrossref%3E10_1155_2008_761459%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1159-e7f10c6985d7aad5fbf92a2e5b37468d59aeac9a8b97d1c63526f451e68168ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true