Loading…
Analysis of Water Features in Gas Leakage Area
In a certain frequency range, gas is an effective absorber and scatterer of sound, which changes the compressibility of water, and then changes the speed and frequency of sound. Gas continues rising, deforming, and dissolving. The same bubble of natural gas has different radii at different depths. B...
Saved in:
Published in: | Journal of Geological Research 2011-12, Vol.2011 (2011), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a certain frequency range, gas is an effective absorber and scatterer of sound, which changes the compressibility of water, and then changes the speed and frequency of sound. Gas continues rising, deforming, and dissolving. The same bubble of natural gas has different radii at different depths. By analyzing these changes, the resonance frequency of gas bubble, and its impacts on sound wave, characteristics of the influences of gas at different depths on the incident sound wave can be obtained. The main sound features of gas are relevant to the gas size, gas content, velocity, attenuation, resonance frequency, the scattering cross-section, and so forth. Sound models with hydrate and free gas in the water and sediment are established. Through the practical application to actual data, the sound characteristics yielded when the gas (or gas hydrate dissociation) escaped the water of seismic data are very clear. |
---|---|
ISSN: | 1687-8833 1687-8841 |
DOI: | 10.1155/2011/525781 |