Loading…
Nucleating Effect of Carbon Nanoparticles and Their Influence on the Thermal and Chemical Stability of Polypropylene
The effect of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) on the thermal and chemical stability of polypropylene (PP) when subjected to oxidation in a strong acid medium was studied. The effect of CNFs and CNTs on the crystalline morphology and the melting and crystallization temperatures w...
Saved in:
Published in: | Journal of nanomaterials 2012-01, Vol.2012 (2012), p.1-8 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) on the thermal and chemical stability of polypropylene (PP) when subjected to oxidation in a strong acid medium was studied. The effect of CNFs and CNTs on the crystalline morphology and the melting and crystallization temperatures was also studied. The thermal stability increased markedly; the decomposition temperature, for example, increased from 293∘C for pure PP to 312 and 320∘C for PP with CNFs and CNTs, respectively. The crystallization temperature increased perceptibly with the addition of CNTs or CNFs, from 107∘C for pure PP to 112 and 114∘C for PP with CNFs and CNTs, respectively. The oxidative degradation with nitric acid produced a reduction in molecular weight; however, this negative effect was less pronounced in the PP compositions with carbon nanoparticles. After 8 hours in nitric acid, this reduction was from 141,000 to 68,000 (for pure PP), to 75,000 (for PP-CNFs), and 79,500 (for PP-CNTs). X-ray diffraction showed that the alpha type crystallinity remains, irrespective of the nucleating agent. Finally, the intensity ratio between the (040) (at 16.7∘) and the (110) (at 13.9∘) reflections increased, which was taken as an indication of an increasing nucleating efficiency. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2012/406214 |