Loading…

Preparation of Organic Zn-Phthalocyanine-Based Semiconducting Materials and Their Optical and Electrochemical Characterization

In order to increase the species of organic semiconductors, new Zn-phthalocyanines-based organic materials were synthesized and characterized. The new compounds have been characterized by 1H and 13C using NMR, FTIR, and UV-Vis. The absorption, fluorescence, and electrochemical properties were also s...

Full description

Saved in:
Bibliographic Details
Published in:Advances in OptoElectronics (Hindawi) 2013-01, Vol.2013 (2013), p.1-7
Main Authors: Hajri, Amira, Touaiti, Sarra, Jamoussi, Bassem
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to increase the species of organic semiconductors, new Zn-phthalocyanines-based organic materials were synthesized and characterized. The new compounds have been characterized by 1H and 13C using NMR, FTIR, and UV-Vis. The absorption, fluorescence, and electrochemical properties were also studied. Green photoluminescence was observed in dilute solutions. In solid thin films, π-π* interactions influenced the optical properties, and redshifted photoluminescence spectra were obtained; red emissions for ZnPAL (647 nm) and ZnPTr (655 nm) were found. By cyclic voltammetry, the electrochemical band gap was estimated to be 1.94 and 1.17 eV for ZnPAl and ZnPTr, respectively. Single-layer diode devices of an indium tin oxide/Zn-phthalocyanine/aluminum configuration were fabricated and showed relatively low turn-on voltages (3.3 V for ZnPAl and 3 V for ZnPTr).
ISSN:1687-563X
1687-5648
DOI:10.1155/2013/321563