Loading…
Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network
This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in...
Saved in:
Published in: | Advances in artificial neural systems 2013-01, Vol.2013 (2013), p.1-7 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83 |
container_end_page | 7 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Advances in artificial neural systems |
container_volume | 2013 |
creator | Haydari, Muhammad Homaei, Hadi |
description | This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme. |
doi_str_mv | 10.1155/2013/410870 |
format | article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2013_410870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>469997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</originalsourceid><addsrcrecordid>eNqF0EtLw0AQB_BFFCy1J89Czkrsvh9HCVqFomKtHsNms6vRPGQ3sfjt3Rrt1bnMwPwYhj8AxwieI8TYHENE5hRBKeAemCAuRSo4lPt_M1P0EMxCeIOxCKKUswl4XvW2SbKu7X1XJ51LdLKqq7JqX9KfzX1rh0b3ldmZJ11_2mQdIon4wZrBe9v2ya0dvK5j6zedfz8CB07Xwc5--xSsry4fs-t0ebe4yS6WqcFEwdQWjFDJsNEl5VAwhkqipaZGGeKoLRnHHFJCUFkUFBuHhRNIKSWVow47SabgbLxrfBeCty7_8FWj_VeOYL6NJd_Gko-xRH066teqLfWm-gefjNhGYp3eYcrjB4J8AwYLak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Haydari, Muhammad ; Homaei, Hadi</creator><contributor>Su, Chao-Ton</contributor><creatorcontrib>Haydari, Muhammad ; Homaei, Hadi ; Su, Chao-Ton</creatorcontrib><description>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</description><identifier>ISSN: 1687-7594</identifier><identifier>EISSN: 1687-7608</identifier><identifier>DOI: 10.1155/2013/410870</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Advances in artificial neural systems, 2013-01, Vol.2013 (2013), p.1-7</ispartof><rights>Copyright © 2013 Mohammad Heidari and Hadi Homaei.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</citedby><cites>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</cites><orcidid>0000-0002-5165-3568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Su, Chao-Ton</contributor><creatorcontrib>Haydari, Muhammad</creatorcontrib><creatorcontrib>Homaei, Hadi</creatorcontrib><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><title>Advances in artificial neural systems</title><description>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</description><issn>1687-7594</issn><issn>1687-7608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQB_BFFCy1J89Czkrsvh9HCVqFomKtHsNms6vRPGQ3sfjt3Rrt1bnMwPwYhj8AxwieI8TYHENE5hRBKeAemCAuRSo4lPt_M1P0EMxCeIOxCKKUswl4XvW2SbKu7X1XJ51LdLKqq7JqX9KfzX1rh0b3ldmZJ11_2mQdIon4wZrBe9v2ya0dvK5j6zedfz8CB07Xwc5--xSsry4fs-t0ebe4yS6WqcFEwdQWjFDJsNEl5VAwhkqipaZGGeKoLRnHHFJCUFkUFBuHhRNIKSWVow47SabgbLxrfBeCty7_8FWj_VeOYL6NJd_Gko-xRH066teqLfWm-gefjNhGYp3eYcrjB4J8AwYLak4</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Haydari, Muhammad</creator><creator>Homaei, Hadi</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5165-3568</orcidid></search><sort><creationdate>20130101</creationdate><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><author>Haydari, Muhammad ; Homaei, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haydari, Muhammad</creatorcontrib><creatorcontrib>Homaei, Hadi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>Advances in artificial neural systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haydari, Muhammad</au><au>Homaei, Hadi</au><au>Su, Chao-Ton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</atitle><jtitle>Advances in artificial neural systems</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-7594</issn><eissn>1687-7608</eissn><abstract>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/410870</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5165-3568</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-7594 |
ispartof | Advances in artificial neural systems, 2013-01, Vol.2013 (2013), p.1-7 |
issn | 1687-7594 1687-7608 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2013_410870 |
source | Wiley-Blackwell Open Access Titles (Open Access); Publicly Available Content (ProQuest) |
title | Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stem%20Control%20of%20a%20Sliding-Stem%20Pneumatic%20Control%20Valve%20Using%20a%20Recurrent%20Neural%20Network&rft.jtitle=Advances%20in%20artificial%20neural%20systems&rft.au=Haydari,%20Muhammad&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-7594&rft.eissn=1687-7608&rft_id=info:doi/10.1155/2013/410870&rft_dat=%3Cemarefa_cross%3E469997%3C/emarefa_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |