Loading…

Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network

This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in...

Full description

Saved in:
Bibliographic Details
Published in:Advances in artificial neural systems 2013-01, Vol.2013 (2013), p.1-7
Main Authors: Haydari, Muhammad, Homaei, Hadi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83
cites cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83
container_end_page 7
container_issue 2013
container_start_page 1
container_title Advances in artificial neural systems
container_volume 2013
creator Haydari, Muhammad
Homaei, Hadi
description This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.
doi_str_mv 10.1155/2013/410870
format article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2013_410870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>469997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</originalsourceid><addsrcrecordid>eNqF0EtLw0AQB_BFFCy1J89Czkrsvh9HCVqFomKtHsNms6vRPGQ3sfjt3Rrt1bnMwPwYhj8AxwieI8TYHENE5hRBKeAemCAuRSo4lPt_M1P0EMxCeIOxCKKUswl4XvW2SbKu7X1XJ51LdLKqq7JqX9KfzX1rh0b3ldmZJ11_2mQdIon4wZrBe9v2ya0dvK5j6zedfz8CB07Xwc5--xSsry4fs-t0ebe4yS6WqcFEwdQWjFDJsNEl5VAwhkqipaZGGeKoLRnHHFJCUFkUFBuHhRNIKSWVow47SabgbLxrfBeCty7_8FWj_VeOYL6NJd_Gko-xRH066teqLfWm-gefjNhGYp3eYcrjB4J8AwYLak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Haydari, Muhammad ; Homaei, Hadi</creator><contributor>Su, Chao-Ton</contributor><creatorcontrib>Haydari, Muhammad ; Homaei, Hadi ; Su, Chao-Ton</creatorcontrib><description>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</description><identifier>ISSN: 1687-7594</identifier><identifier>EISSN: 1687-7608</identifier><identifier>DOI: 10.1155/2013/410870</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Advances in artificial neural systems, 2013-01, Vol.2013 (2013), p.1-7</ispartof><rights>Copyright © 2013 Mohammad Heidari and Hadi Homaei.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</citedby><cites>FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</cites><orcidid>0000-0002-5165-3568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Su, Chao-Ton</contributor><creatorcontrib>Haydari, Muhammad</creatorcontrib><creatorcontrib>Homaei, Hadi</creatorcontrib><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><title>Advances in artificial neural systems</title><description>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</description><issn>1687-7594</issn><issn>1687-7608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQB_BFFCy1J89Czkrsvh9HCVqFomKtHsNms6vRPGQ3sfjt3Rrt1bnMwPwYhj8AxwieI8TYHENE5hRBKeAemCAuRSo4lPt_M1P0EMxCeIOxCKKUswl4XvW2SbKu7X1XJ51LdLKqq7JqX9KfzX1rh0b3ldmZJ11_2mQdIon4wZrBe9v2ya0dvK5j6zedfz8CB07Xwc5--xSsry4fs-t0ebe4yS6WqcFEwdQWjFDJsNEl5VAwhkqipaZGGeKoLRnHHFJCUFkUFBuHhRNIKSWVow47SabgbLxrfBeCty7_8FWj_VeOYL6NJd_Gko-xRH066teqLfWm-gefjNhGYp3eYcrjB4J8AwYLak4</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Haydari, Muhammad</creator><creator>Homaei, Hadi</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5165-3568</orcidid></search><sort><creationdate>20130101</creationdate><title>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</title><author>Haydari, Muhammad ; Homaei, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haydari, Muhammad</creatorcontrib><creatorcontrib>Homaei, Hadi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>Advances in artificial neural systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haydari, Muhammad</au><au>Homaei, Hadi</au><au>Su, Chao-Ton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network</atitle><jtitle>Advances in artificial neural systems</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-7594</issn><eissn>1687-7608</eissn><abstract>This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/410870</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5165-3568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-7594
ispartof Advances in artificial neural systems, 2013-01, Vol.2013 (2013), p.1-7
issn 1687-7594
1687-7608
language eng
recordid cdi_crossref_primary_10_1155_2013_410870
source Wiley-Blackwell Open Access Titles (Open Access); Publicly Available Content (ProQuest)
title Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stem%20Control%20of%20a%20Sliding-Stem%20Pneumatic%20Control%20Valve%20Using%20a%20Recurrent%20Neural%20Network&rft.jtitle=Advances%20in%20artificial%20neural%20systems&rft.au=Haydari,%20Muhammad&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-7594&rft.eissn=1687-7608&rft_id=info:doi/10.1155/2013/410870&rft_dat=%3Cemarefa_cross%3E469997%3C/emarefa_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2390-eb534852cad4607551d3a8a4c9c3f4ed562604331dbb42cf27f7199989f4f2f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true