Loading…
Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts
Unsupported and supported iron oxide catalysts were prepared by incipient wetness impregnation method and studied in the water-gas shift reaction (WGSR) in the temperature range 350–450°C. The techniques of characterization employed were BET, X-ray diffraction, acid-base measurements by microcalorim...
Saved in:
Published in: | Journal of Catalysts (Online) 2014-09, Vol.2014, p.1-6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unsupported and supported iron oxide catalysts were prepared by incipient wetness impregnation method and studied in the water-gas shift reaction (WGSR) in the temperature range 350–450°C. The techniques of characterization employed were BET, X-ray diffraction, acid-base measurements by microcalorimetry and in situ diffuse reflectance infrared Fourier transform spectroscopy. MgO, TiO2, or SiO2 was added in order to (i) obtain a catalyst exempt of chromium oxide and (ii) study the effect of their acid-base properties on catalytic activity of Fe2O3. X-ray diffraction studies, and calorimetric and diffuse reflectance infrared Fourier transform measurements reveal a complete change in the physicochemical properties of the iron oxide catalyst after MgO addition due to the formation of the spinel oxide phase. These results could indicate that the MgFe2O4 phase stabilizes the reduced iron phase, preventing its sintering under realistic WGSR conditions (high H2O partial pressures). |
---|---|
ISSN: | 2314-5102 2314-5110 |
DOI: | 10.1155/2014/612575 |