Loading…
Evaluation of CoBlast Coated Titanium Alloy as Proton Exchange Membrane Fuel Cell Bipolar Plates
We investigated the potential of graphite based coatings deposited on titanium V alloy by a low-cost powder based process for bipolar plate application. The coatings which were deposited from a mixture of graphite and alumina powders at ambient temperature, pressure of 90 psi, and speed of 20 mm wer...
Saved in:
Published in: | Journal of materials 2014-05, Vol.2014, p.1-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the potential of graphite based coatings deposited on titanium V alloy by a low-cost powder based process for bipolar plate application. The coatings which were deposited from a mixture of graphite and alumina powders at ambient temperature, pressure of 90 psi, and speed of 20 mm were characterised and electrochemically polarised in 0.5 M H2SO4 + 2 ppm HF bubbled with air and hydrogen gas to depict the cathode and anode PEM fuel cell environment, respectively. Surface conductivity and water contact angles were also evaluated. Corrosion current in the 1 μA/cm2 range in both cathodic and anodic environment at room temperature and showed negligible influence on the electrochemical behaviour of the bare alloy. Similar performance, which was attributed to the discontinuities in the coatings, was also observed when polarised at 0.6 V and −0.1 V with air and hydrogen bubbling at 70∘C respectively. At 140 N/cm2, the coated alloy exhibited contact resistance of 45.70 mΩ·cm2 which was lower than that of the bare alloy (66.50 mΩ·cm2) but twice that of graphite (21.29 mΩ·cm2). Similarly, the wettability test indicated that the coated layer exhibited higher contact angle of 99.63° than that of the bare alloy (66.32°). Over all, these results indicated need for improvement in the coating process to achieve a continuous layer. |
---|---|
ISSN: | 2314-4866 2314-4874 |
DOI: | 10.1155/2014/914817 |