Loading…
Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries
A hybrid material, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , with excess lithium and wrapped in reduced graphene oxide (rGO), has been synthesized through ultrasonication employing Triton X as a surfactant. The ultrasonication process breaks down the initially clustered large particles into small nanoparticles,...
Saved in:
Published in: | International journal of energy research 2024-01, Vol.2024 (1) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-crossref_primary_10_1155_2024_56633323 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Israel Nungu, Nungu Jenerali Nyamtara, Kelvin Cyril Karima, Neema Kim, Sung Hoon Nguyen, Manh Cuong Mai Duong, Thi Phuong Lim, Sung Nam Jun, Yun-Seok Ahn, Wook |
description | A hybrid material, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , with excess lithium and wrapped in reduced graphene oxide (rGO), has been synthesized through ultrasonication employing Triton X as a surfactant. The ultrasonication process breaks down the initially clustered large particles into small nanoparticles, ensuring a uniform composite with reduced graphene oxide. With a consistent capacity retention of 87.56% over 100 cycles, the cathode composite exhibits a promising initial capacity of around 250 mAh g −1 at 0.1 C. Notably, the composite has high‐rate capability, providing capacities of 230 and 178.9 mAh g −1 at 0.2 and 2 C, respectively. These experimental results indicate that the well‐dispersed LiNi 0.8 Co 0.1 Mn 0.1 O 2 nanoparticles and the porous reduced graphene oxide framework work in concert to enhance the electrochemical performance of the reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material, which was achieved through ultrasonication with Triton X (TX‐100) surfactant assistance. This synergy allows for the fast diffusion of both Li ions (Li + ) and electrons (e − ) while also allowing volumetric variations during the introduction and withdrawal of Li ions (Li + ). As a result, the fabrication of this reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material shows promise as a high‐rate cathode material, especially for energy storage applications. |
doi_str_mv | 10.1155/2024/5663332 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2024_5663332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2024_5663332</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1155_2024_56633323</originalsourceid><addsrcrecordid>eNqVj0FOwzAQRS0EEqGw4wBzANLYcZOSJVSUItEWURbdWSYdE6MkrjzedMeWHWfkJLioF-jq6c2fGekzdi34UIiiyHKej7KiLKWU-QlLBK-qVIjR-pQlXJYyrfh4fc4uiD45j5kYJ-x7qmvbIqx2fWiQLMEcQ-M24AyssDW_Xz93RNi9t7iBhY36ausGnu3CAh_ewryPEDBx_1hCDpl_XEbvto5sQDDOw8x-NPHyBX20Tvc1xgdx8OR6uNchoLdIl-zM6Jbw6sABu5k-vE1mae0dkUejtt522u-U4GpfV-3rqkNdeeT6H47KXFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries</title><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Israel Nungu, Nungu ; Jenerali Nyamtara, Kelvin ; Cyril Karima, Neema ; Kim, Sung Hoon ; Nguyen, Manh Cuong ; Mai Duong, Thi Phuong ; Lim, Sung Nam ; Jun, Yun-Seok ; Ahn, Wook</creator><contributor>Sun, Hongtao</contributor><creatorcontrib>Israel Nungu, Nungu ; Jenerali Nyamtara, Kelvin ; Cyril Karima, Neema ; Kim, Sung Hoon ; Nguyen, Manh Cuong ; Mai Duong, Thi Phuong ; Lim, Sung Nam ; Jun, Yun-Seok ; Ahn, Wook ; Sun, Hongtao</creatorcontrib><description>A hybrid material, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , with excess lithium and wrapped in reduced graphene oxide (rGO), has been synthesized through ultrasonication employing Triton X as a surfactant. The ultrasonication process breaks down the initially clustered large particles into small nanoparticles, ensuring a uniform composite with reduced graphene oxide. With a consistent capacity retention of 87.56% over 100 cycles, the cathode composite exhibits a promising initial capacity of around 250 mAh g −1 at 0.1 C. Notably, the composite has high‐rate capability, providing capacities of 230 and 178.9 mAh g −1 at 0.2 and 2 C, respectively. These experimental results indicate that the well‐dispersed LiNi 0.8 Co 0.1 Mn 0.1 O 2 nanoparticles and the porous reduced graphene oxide framework work in concert to enhance the electrochemical performance of the reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material, which was achieved through ultrasonication with Triton X (TX‐100) surfactant assistance. This synergy allows for the fast diffusion of both Li ions (Li + ) and electrons (e − ) while also allowing volumetric variations during the introduction and withdrawal of Li ions (Li + ). As a result, the fabrication of this reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material shows promise as a high‐rate cathode material, especially for energy storage applications.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/5663332</identifier><language>eng</language><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1155_2024_56633323</cites><orcidid>0000-0003-3787-3131 ; 0000-0002-6488-6213 ; 0000-0003-0325-4447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Sun, Hongtao</contributor><creatorcontrib>Israel Nungu, Nungu</creatorcontrib><creatorcontrib>Jenerali Nyamtara, Kelvin</creatorcontrib><creatorcontrib>Cyril Karima, Neema</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Mai Duong, Thi Phuong</creatorcontrib><creatorcontrib>Lim, Sung Nam</creatorcontrib><creatorcontrib>Jun, Yun-Seok</creatorcontrib><creatorcontrib>Ahn, Wook</creatorcontrib><title>Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries</title><title>International journal of energy research</title><description>A hybrid material, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , with excess lithium and wrapped in reduced graphene oxide (rGO), has been synthesized through ultrasonication employing Triton X as a surfactant. The ultrasonication process breaks down the initially clustered large particles into small nanoparticles, ensuring a uniform composite with reduced graphene oxide. With a consistent capacity retention of 87.56% over 100 cycles, the cathode composite exhibits a promising initial capacity of around 250 mAh g −1 at 0.1 C. Notably, the composite has high‐rate capability, providing capacities of 230 and 178.9 mAh g −1 at 0.2 and 2 C, respectively. These experimental results indicate that the well‐dispersed LiNi 0.8 Co 0.1 Mn 0.1 O 2 nanoparticles and the porous reduced graphene oxide framework work in concert to enhance the electrochemical performance of the reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material, which was achieved through ultrasonication with Triton X (TX‐100) surfactant assistance. This synergy allows for the fast diffusion of both Li ions (Li + ) and electrons (e − ) while also allowing volumetric variations during the introduction and withdrawal of Li ions (Li + ). As a result, the fabrication of this reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material shows promise as a high‐rate cathode material, especially for energy storage applications.</description><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj0FOwzAQRS0EEqGw4wBzANLYcZOSJVSUItEWURbdWSYdE6MkrjzedMeWHWfkJLioF-jq6c2fGekzdi34UIiiyHKej7KiLKWU-QlLBK-qVIjR-pQlXJYyrfh4fc4uiD45j5kYJ-x7qmvbIqx2fWiQLMEcQ-M24AyssDW_Xz93RNi9t7iBhY36ausGnu3CAh_ewryPEDBx_1hCDpl_XEbvto5sQDDOw8x-NPHyBX20Tvc1xgdx8OR6uNchoLdIl-zM6Jbw6sABu5k-vE1mae0dkUejtt522u-U4GpfV-3rqkNdeeT6H47KXFI</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Israel Nungu, Nungu</creator><creator>Jenerali Nyamtara, Kelvin</creator><creator>Cyril Karima, Neema</creator><creator>Kim, Sung Hoon</creator><creator>Nguyen, Manh Cuong</creator><creator>Mai Duong, Thi Phuong</creator><creator>Lim, Sung Nam</creator><creator>Jun, Yun-Seok</creator><creator>Ahn, Wook</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3787-3131</orcidid><orcidid>https://orcid.org/0000-0002-6488-6213</orcidid><orcidid>https://orcid.org/0000-0003-0325-4447</orcidid></search><sort><creationdate>202401</creationdate><title>Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries</title><author>Israel Nungu, Nungu ; Jenerali Nyamtara, Kelvin ; Cyril Karima, Neema ; Kim, Sung Hoon ; Nguyen, Manh Cuong ; Mai Duong, Thi Phuong ; Lim, Sung Nam ; Jun, Yun-Seok ; Ahn, Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1155_2024_56633323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Israel Nungu, Nungu</creatorcontrib><creatorcontrib>Jenerali Nyamtara, Kelvin</creatorcontrib><creatorcontrib>Cyril Karima, Neema</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Mai Duong, Thi Phuong</creatorcontrib><creatorcontrib>Lim, Sung Nam</creatorcontrib><creatorcontrib>Jun, Yun-Seok</creatorcontrib><creatorcontrib>Ahn, Wook</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Israel Nungu, Nungu</au><au>Jenerali Nyamtara, Kelvin</au><au>Cyril Karima, Neema</au><au>Kim, Sung Hoon</au><au>Nguyen, Manh Cuong</au><au>Mai Duong, Thi Phuong</au><au>Lim, Sung Nam</au><au>Jun, Yun-Seok</au><au>Ahn, Wook</au><au>Sun, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries</atitle><jtitle>International journal of energy research</jtitle><date>2024-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>A hybrid material, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , with excess lithium and wrapped in reduced graphene oxide (rGO), has been synthesized through ultrasonication employing Triton X as a surfactant. The ultrasonication process breaks down the initially clustered large particles into small nanoparticles, ensuring a uniform composite with reduced graphene oxide. With a consistent capacity retention of 87.56% over 100 cycles, the cathode composite exhibits a promising initial capacity of around 250 mAh g −1 at 0.1 C. Notably, the composite has high‐rate capability, providing capacities of 230 and 178.9 mAh g −1 at 0.2 and 2 C, respectively. These experimental results indicate that the well‐dispersed LiNi 0.8 Co 0.1 Mn 0.1 O 2 nanoparticles and the porous reduced graphene oxide framework work in concert to enhance the electrochemical performance of the reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material, which was achieved through ultrasonication with Triton X (TX‐100) surfactant assistance. This synergy allows for the fast diffusion of both Li ions (Li + ) and electrons (e − ) while also allowing volumetric variations during the introduction and withdrawal of Li ions (Li + ). As a result, the fabrication of this reduced graphene oxide‐wrapped LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material shows promise as a high‐rate cathode material, especially for energy storage applications.</abstract><doi>10.1155/2024/5663332</doi><orcidid>https://orcid.org/0000-0003-3787-3131</orcidid><orcidid>https://orcid.org/0000-0002-6488-6213</orcidid><orcidid>https://orcid.org/0000-0003-0325-4447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-01, Vol.2024 (1) |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_crossref_primary_10_1155_2024_5663332 |
source | Wiley Online Library Open Access; ProQuest - Publicly Available Content Database |
title | Facile Synthesis Method of Self‐Assembled Ni‐Rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 /rGO Composite for High‐Performance Li‐Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Synthesis%20Method%20of%20Self%E2%80%90Assembled%20Ni%E2%80%90Rich%20LiNi%200.8%20Mn%200.1%20Co%200.1%20O%202%20/rGO%20Composite%20for%20High%E2%80%90Performance%20Li%E2%80%90Ion%20Batteries&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Israel%20Nungu,%20Nungu&rft.date=2024-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/5663332&rft_dat=%3Ccrossref%3E10_1155_2024_5663332%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1155_2024_56633323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |