Loading…

Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline

We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of stochastic analysis 2000-01, Vol.13 (4), p.365-392
Main Authors: Kawasaki, Norikazu, Takagi, Hideaki, Takahashi, Yutaka, Hong, Sung-Jo, Hasegawa, Toshiharu
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3
cites
container_end_page 392
container_issue 4
container_start_page 365
container_title International journal of stochastic analysis
container_volume 13
creator Kawasaki, Norikazu
Takagi, Hideaki
Takahashi, Yutaka
Hong, Sung-Jo
Hasegawa, Toshiharu
description We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.
doi_str_mv 10.1155/S1048953300000320
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_S1048953300000320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_S1048953300000320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</originalsourceid><addsrcrecordid>eNplkEFLAzEQhYMoWGp_gLf5A-tOkt1uc5SiVah4sKC3ZZpNNLK7qUm20n9vV8WLc5h5D4YH72PskuMV52WZP3EsFqqUEseRAk_YRKDCTMoCT_-0FOdsFuP795MSFZcTlp7JJde_QnKdAeqpPUQXwfoAD_ACOawg57ALzgeXDvAxmMFE-HTpLR-XHxLsSVNyvo8w9I0JEKhvfAc-jMZbiCbsnTbQuKjdrnW9uWBnltpoZr93yja3N5vlXbZ-XN0vr9eZVogZCTXX0mi9JVNIqZo5NUIoi5WqyoWqBDZEirRGU9mt0LaUxqryCERwq2krp4z_xOrgYwzG1sceHYVDzbEewdX_wMkvEJRhvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><source>Wiley-Blackwell Open Access Collection</source><creator>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creator><creatorcontrib>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creatorcontrib><description>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</description><identifier>ISSN: 2090-3332</identifier><identifier>EISSN: 2090-3340</identifier><identifier>DOI: 10.1155/S1048953300000320</identifier><language>eng</language><ispartof>International journal of stochastic analysis, 2000-01, Vol.13 (4), p.365-392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><title>International journal of stochastic analysis</title><description>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</description><issn>2090-3332</issn><issn>2090-3340</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplkEFLAzEQhYMoWGp_gLf5A-tOkt1uc5SiVah4sKC3ZZpNNLK7qUm20n9vV8WLc5h5D4YH72PskuMV52WZP3EsFqqUEseRAk_YRKDCTMoCT_-0FOdsFuP795MSFZcTlp7JJde_QnKdAeqpPUQXwfoAD_ACOawg57ALzgeXDvAxmMFE-HTpLR-XHxLsSVNyvo8w9I0JEKhvfAc-jMZbiCbsnTbQuKjdrnW9uWBnltpoZr93yja3N5vlXbZ-XN0vr9eZVogZCTXX0mi9JVNIqZo5NUIoi5WqyoWqBDZEirRGU9mt0LaUxqryCERwq2krp4z_xOrgYwzG1sceHYVDzbEewdX_wMkvEJRhvw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Kawasaki, Norikazu</creator><creator>Takagi, Hideaki</creator><creator>Takahashi, Yutaka</creator><creator>Hong, Sung-Jo</creator><creator>Hasegawa, Toshiharu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><author>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of stochastic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Norikazu</au><au>Takagi, Hideaki</au><au>Takahashi, Yutaka</au><au>Hong, Sung-Jo</au><au>Hasegawa, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</atitle><jtitle>International journal of stochastic analysis</jtitle><date>2000-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>365</spage><epage>392</epage><pages>365-392</pages><issn>2090-3332</issn><eissn>2090-3340</eissn><abstract>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</abstract><doi>10.1155/S1048953300000320</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2090-3332
ispartof International journal of stochastic analysis, 2000-01, Vol.13 (4), p.365-392
issn 2090-3332
2090-3340
language eng
recordid cdi_crossref_primary_10_1155_S1048953300000320
source Wiley-Blackwell Open Access Collection
title Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waiting%20time%20analysis%20for%20M%20X%20/%20G%20/1%20priority%20queues%20with/without%20vacations%20under%20random%20order%20of%20service%20discipline&rft.jtitle=International%20journal%20of%20stochastic%20analysis&rft.au=Kawasaki,%20Norikazu&rft.date=2000-01&rft.volume=13&rft.issue=4&rft.spage=365&rft.epage=392&rft.pages=365-392&rft.issn=2090-3332&rft.eissn=2090-3340&rft_id=info:doi/10.1155/S1048953300000320&rft_dat=%3Ccrossref%3E10_1155_S1048953300000320%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true