Loading…
Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline
We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive th...
Saved in:
Published in: | International journal of stochastic analysis 2000-01, Vol.13 (4), p.365-392 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3 |
---|---|
cites | |
container_end_page | 392 |
container_issue | 4 |
container_start_page | 365 |
container_title | International journal of stochastic analysis |
container_volume | 13 |
creator | Kawasaki, Norikazu Takagi, Hideaki Takahashi, Yutaka Hong, Sung-Jo Hasegawa, Toshiharu |
description | We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues. |
doi_str_mv | 10.1155/S1048953300000320 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_S1048953300000320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_S1048953300000320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</originalsourceid><addsrcrecordid>eNplkEFLAzEQhYMoWGp_gLf5A-tOkt1uc5SiVah4sKC3ZZpNNLK7qUm20n9vV8WLc5h5D4YH72PskuMV52WZP3EsFqqUEseRAk_YRKDCTMoCT_-0FOdsFuP795MSFZcTlp7JJde_QnKdAeqpPUQXwfoAD_ACOawg57ALzgeXDvAxmMFE-HTpLR-XHxLsSVNyvo8w9I0JEKhvfAc-jMZbiCbsnTbQuKjdrnW9uWBnltpoZr93yja3N5vlXbZ-XN0vr9eZVogZCTXX0mi9JVNIqZo5NUIoi5WqyoWqBDZEirRGU9mt0LaUxqryCERwq2krp4z_xOrgYwzG1sceHYVDzbEewdX_wMkvEJRhvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><source>Wiley-Blackwell Open Access Collection</source><creator>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creator><creatorcontrib>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</creatorcontrib><description>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</description><identifier>ISSN: 2090-3332</identifier><identifier>EISSN: 2090-3340</identifier><identifier>DOI: 10.1155/S1048953300000320</identifier><language>eng</language><ispartof>International journal of stochastic analysis, 2000-01, Vol.13 (4), p.365-392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><title>International journal of stochastic analysis</title><description>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</description><issn>2090-3332</issn><issn>2090-3340</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplkEFLAzEQhYMoWGp_gLf5A-tOkt1uc5SiVah4sKC3ZZpNNLK7qUm20n9vV8WLc5h5D4YH72PskuMV52WZP3EsFqqUEseRAk_YRKDCTMoCT_-0FOdsFuP795MSFZcTlp7JJde_QnKdAeqpPUQXwfoAD_ACOawg57ALzgeXDvAxmMFE-HTpLR-XHxLsSVNyvo8w9I0JEKhvfAc-jMZbiCbsnTbQuKjdrnW9uWBnltpoZr93yja3N5vlXbZ-XN0vr9eZVogZCTXX0mi9JVNIqZo5NUIoi5WqyoWqBDZEirRGU9mt0LaUxqryCERwq2krp4z_xOrgYwzG1sceHYVDzbEewdX_wMkvEJRhvw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Kawasaki, Norikazu</creator><creator>Takagi, Hideaki</creator><creator>Takahashi, Yutaka</creator><creator>Hong, Sung-Jo</creator><creator>Hasegawa, Toshiharu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</title><author>Kawasaki, Norikazu ; Takagi, Hideaki ; Takahashi, Yutaka ; Hong, Sung-Jo ; Hasegawa, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Norikazu</creatorcontrib><creatorcontrib>Takagi, Hideaki</creatorcontrib><creatorcontrib>Takahashi, Yutaka</creatorcontrib><creatorcontrib>Hong, Sung-Jo</creatorcontrib><creatorcontrib>Hasegawa, Toshiharu</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of stochastic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Norikazu</au><au>Takagi, Hideaki</au><au>Takahashi, Yutaka</au><au>Hong, Sung-Jo</au><au>Hasegawa, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline</atitle><jtitle>International journal of stochastic analysis</jtitle><date>2000-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>365</spage><epage>392</epage><pages>365-392</pages><issn>2090-3332</issn><eissn>2090-3340</eissn><abstract>We study M X / G /1 nonpreemptive and preemptive‐resume priority queues with/without vacations under random order of service (ROS) discipline within each class. By considering the conditional waiting times given the states of the system, which an arbitrary message observes upon arrival, we derive the Laplace‐Stieltjes transforms of the waiting time distributions and explicitly obtain the first two moments. The relationship for the second moments under ROS and first‐come first‐served disciplines extends the one found previously by Takacs and Fuhrmann for non‐priority single arrival queues.</abstract><doi>10.1155/S1048953300000320</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-3332 |
ispartof | International journal of stochastic analysis, 2000-01, Vol.13 (4), p.365-392 |
issn | 2090-3332 2090-3340 |
language | eng |
recordid | cdi_crossref_primary_10_1155_S1048953300000320 |
source | Wiley-Blackwell Open Access Collection |
title | Waiting time analysis for M X / G /1 priority queues with/without vacations under random order of service discipline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waiting%20time%20analysis%20for%20M%20X%20/%20G%20/1%20priority%20queues%20with/without%20vacations%20under%20random%20order%20of%20service%20discipline&rft.jtitle=International%20journal%20of%20stochastic%20analysis&rft.au=Kawasaki,%20Norikazu&rft.date=2000-01&rft.volume=13&rft.issue=4&rft.spage=365&rft.epage=392&rft.pages=365-392&rft.issn=2090-3332&rft.eissn=2090-3340&rft_id=info:doi/10.1155/S1048953300000320&rft_dat=%3Ccrossref%3E10_1155_S1048953300000320%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c900-a296c3eccbae4339d6ad229f0797589720daa9acc0e7fb2cf53ef9515521fcab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |