Loading…
Connectivity properties for subspaces of function spacesdetermined by fixed points
We study the topology of a subspace of the function space of continuous self‐mappings of a given manifold: the subspace determined by maps having the least number of fixed points in its homotopy class. In the case that the manifold is a closed disk of finite dimension, we prove that this subspace is...
Saved in:
Published in: | Abstract and applied analysis 2003-01, Vol.2003 (2), p.121-128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 128 |
container_issue | 2 |
container_start_page | 121 |
container_title | Abstract and applied analysis |
container_volume | 2003 |
creator | Gonçalves, Daciberg L. Kelly, Michael R. |
description | We study the topology of a subspace of the function space of continuous self‐mappings of a given manifold: the subspace determined by maps having the least number of fixed points in its homotopy class. In the case that the manifold is a closed disk of finite dimension, we prove that this subspace is both globally and locally path connected. We also prove this result when the manifold is a sphere of dimension 1, 3, or 7. |
doi_str_mv | 10.1155/S1085337503204024 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1155_S1085337503204024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_S1085337503204024</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1155_S10853375032040243</originalsourceid><addsrcrecordid>eNqdTrsKwjAUDaJgfXyAW36getO0ts6iOKt76SOBiE1CbhT796bo5uZ03nAIWTFYM5ZlmwuDIuM8z4AnkEKSjkjEtkUeB7EbBx7ieMinZIZ4AwCep2lEznujtWi8eirfU-uMFc4rgVQaR_FRo62aoIyk8qFDzWj6sVrhheuUFi2teyrVKxBrlPa4IBNZ3VEsvzgn7Hi47k9x4wyiE7K0TnWV60sG5XC-_DnP_9m8ATgMTUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connectivity properties for subspaces of function spacesdetermined by fixed points</title><source>IngentaConnect Journals</source><source>Wiley Open Access</source><creator>Gonçalves, Daciberg L. ; Kelly, Michael R.</creator><creatorcontrib>Gonçalves, Daciberg L. ; Kelly, Michael R.</creatorcontrib><description>We study the topology of a subspace of the function space of continuous self‐mappings of a given manifold: the subspace determined by maps having the least number of fixed points in its homotopy class. In the case that the manifold is a closed disk of finite dimension, we prove that this subspace is both globally and locally path connected. We also prove this result when the manifold is a sphere of dimension 1, 3, or 7.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/S1085337503204024</identifier><language>eng</language><ispartof>Abstract and applied analysis, 2003-01, Vol.2003 (2), p.121-128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gonçalves, Daciberg L.</creatorcontrib><creatorcontrib>Kelly, Michael R.</creatorcontrib><title>Connectivity properties for subspaces of function spacesdetermined by fixed points</title><title>Abstract and applied analysis</title><description>We study the topology of a subspace of the function space of continuous self‐mappings of a given manifold: the subspace determined by maps having the least number of fixed points in its homotopy class. In the case that the manifold is a closed disk of finite dimension, we prove that this subspace is both globally and locally path connected. We also prove this result when the manifold is a sphere of dimension 1, 3, or 7.</description><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqdTrsKwjAUDaJgfXyAW36getO0ts6iOKt76SOBiE1CbhT796bo5uZ03nAIWTFYM5ZlmwuDIuM8z4AnkEKSjkjEtkUeB7EbBx7ieMinZIZ4AwCep2lEznujtWi8eirfU-uMFc4rgVQaR_FRo62aoIyk8qFDzWj6sVrhheuUFi2teyrVKxBrlPa4IBNZ3VEsvzgn7Hi47k9x4wyiE7K0TnWV60sG5XC-_DnP_9m8ATgMTUo</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Gonçalves, Daciberg L.</creator><creator>Kelly, Michael R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200301</creationdate><title>Connectivity properties for subspaces of function spacesdetermined by fixed points</title><author>Gonçalves, Daciberg L. ; Kelly, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1155_S10853375032040243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Daciberg L.</creatorcontrib><creatorcontrib>Kelly, Michael R.</creatorcontrib><collection>CrossRef</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Daciberg L.</au><au>Kelly, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity properties for subspaces of function spacesdetermined by fixed points</atitle><jtitle>Abstract and applied analysis</jtitle><date>2003-01</date><risdate>2003</risdate><volume>2003</volume><issue>2</issue><spage>121</spage><epage>128</epage><pages>121-128</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We study the topology of a subspace of the function space of continuous self‐mappings of a given manifold: the subspace determined by maps having the least number of fixed points in its homotopy class. In the case that the manifold is a closed disk of finite dimension, we prove that this subspace is both globally and locally path connected. We also prove this result when the manifold is a sphere of dimension 1, 3, or 7.</abstract><doi>10.1155/S1085337503204024</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and applied analysis, 2003-01, Vol.2003 (2), p.121-128 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_crossref_primary_10_1155_S1085337503204024 |
source | IngentaConnect Journals; Wiley Open Access |
title | Connectivity properties for subspaces of function spacesdetermined by fixed points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20properties%20for%20subspaces%20of%20function%20spacesdetermined%20by%20fixed%20points&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=Gon%C3%A7alves,%20Daciberg%20L.&rft.date=2003-01&rft.volume=2003&rft.issue=2&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/S1085337503204024&rft_dat=%3Ccrossref%3E10_1155_S1085337503204024%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1155_S10853375032040243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |