Loading…

Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer

EGFR-activating mutations are observed in approximately 15% to 20% of patients with non-small cell lung cancer. Tyrosine kinase inhibitors have provided an illustrative example of the successes in targeting oncogene addiction in cancer and the role of tumor-specific adaptations conferring therapeuti...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2019-02, Vol.79 (4), p.689-698
Main Authors: Murtuza, Ayesha, Bulbul, Ajaz, Shen, John Paul, Keshavarzian, Parissa, Woodward, Brian D, Lopez-Diaz, Fernando J, Lippman, Scott M, Husain, Hatim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:EGFR-activating mutations are observed in approximately 15% to 20% of patients with non-small cell lung cancer. Tyrosine kinase inhibitors have provided an illustrative example of the successes in targeting oncogene addiction in cancer and the role of tumor-specific adaptations conferring therapeutic resistance. The compound osimertinib is a third-generation tyrosine kinase inhibitor, which was granted full FDA approval in March 2017 based on targeting EGFR T790M resistance. The compound has received additional FDA approval as first-line therapy with improvement in progression-free survival by suppressing the activating mutation and preventing the rise of the dominant resistance clone. Drug development has been breathtaking in this space with other third-generation compounds at various stages of development: rociletinib (CO-1686), olmutinib (HM61713), nazartinib (EGF816), naquotinib (ASP8273), mavelertinib (PF-0647775), and AC0010. However, therapeutic resistance after the administration of third-generation inhibitors is complex and not fully understood, with significant intertumoral and intratumoral heterogeneity. Repeat tissue and plasma analyses on therapy have revealed insights into multiple mechanisms of resistance, including novel second site EGFR mutations, activated bypass pathways such as MET amplification, HER2 amplification, RAS mutations, BRAF mutations, PIK3CA mutations, and novel fusion events. Strategies to understand and predict patterns of mutagenesis are still in their infancy; however, technologies to understand synthetically lethal dependencies and track cancer evolution through therapy are being explored. The expansion of combinatorial therapies is a direction forward targeting minimal residual disease and bypass pathways early based on projected resistance.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-18-1281