Loading…

Temporal and Spatial Evolution of Therapy-Induced Tumor Apoptosis Detected by Caspase-3―Selective Molecular Imaging

Induction of apoptosis in tumors is considered a desired goal of anticancer therapy. We investigated whether the dynamic temporal and spatial evolution of apoptosis in response to cytotoxic and mechanism-based therapeutics could be detected noninvasively by the caspase-3 radiotracer [(18)F]ICMT-11 a...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2013-07, Vol.19 (14), p.3914-3924
Main Authors: NGUYEN, Quang-Dé, LAVDAS, Ioannis, GUBBINS, James, SMITH, Graham, FORTT, Robin, CARROLL, Laurence S, GRAHAM, Martin A, ABOAGYE, Eric O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Induction of apoptosis in tumors is considered a desired goal of anticancer therapy. We investigated whether the dynamic temporal and spatial evolution of apoptosis in response to cytotoxic and mechanism-based therapeutics could be detected noninvasively by the caspase-3 radiotracer [(18)F]ICMT-11 and positron emission tomography (PET). The effects of a single dose of the alkylating agent cyclophosphamide (CPA or 4-hydroperoxycyclophosphamide), or the mechanism-based small molecule SMAC mimetic birinapant on caspase-3 activation was assessed in vitro and by [(18)F]ICMT-11-PET in mice bearing 38C13 B-cell lymphoma, HCT116 colon carcinoma, or MDA-MB-231 breast adenocarcinoma tumors. Ex vivo analysis of caspase-3 was compared to the in vivo PET imaging data. Drug treatment increased the mean [(18)F]ICMT-11 tumor uptake with a peak at 24 hours for CPA (40 mg/kg; AUC40-60: 8.04 ± 1.33 and 16.05 ± 3.35 %ID/mL × min at baseline and 24 hours, respectively) and 6 hours for birinapant (15 mg/kg; AUC40-60: 20.29 ± 0.82 and 31.07 ± 5.66 %ID/mL × min, at baseline and 6 hours, respectively). Voxel-based spatiotemporal analysis of tumor-intrinsic heterogeneity suggested that discrete pockets of caspase-3 activation could be detected by [(18)F]ICMT-11. Increased tumor [(18)F]ICMT-11 uptake was associated with caspase-3 activation measured ex vivo, and early radiotracer uptake predicted apoptosis, distinct from the glucose metabolism with [(18)F]fluorodeoxyglucose-PET, which depicted continuous loss of cell viability. The proapoptotic effects of CPA and birinapant resulted in a time-dependent increase in [(18)F]ICMT-11 uptake detected by PET. [(18)F]ICMT-11-PET holds promise as a noninvasive pharmacodynamic biomarker of caspase-3-associated apoptosis in tumors.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-12-3814