Loading…
Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways
This study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes, including A549 (lung adenocarcinoma), 786-O (...
Saved in:
Published in: | Molecular cancer therapeutics 2006-09, Vol.5 (9), p.2378-2387 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase
inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes,
including A549 (lung adenocarcinoma), 786-O (renal cell carcinoma), HeLa (cervical carcinoma), MDA-MB-231 (breast), K562 (chronic
myelogenous leukemia), Jurkat (acute T-cell leukemia), MEC-2 (B-chronic lymphocytic leukemia), and U251 and D37 (glioma),
as well as cells derived from primary human glioma tumors that are likely a more clinically relevant model were treated with
sorafenib or bortezomib alone or in combination. Sorafenib and bortezomib synergistically induced a marked increase in mitochondrial
injury and apoptosis, reflected by cytochrome c release, caspase-3 cleavage, and poly(ADP-ribose) polymerase degradation in a broad range of solid tumor and leukemia cell
lines. These findings were accompanied by several biochemical changes, including decreased phosphorylation of vascular endothelial
growth factor receptor-2, platelet-derived growth factor receptor-β, and Akt and increased phosphorylation of stress-related
c-Jun NH 2 -terminal kinase (JNK). Inhibition of Akt was required for synergism, as a constitutively active Akt protected cells against
apoptosis induced by the combination. Alternatively, the JNK inhibitor SP600125 could also protect cells from apoptosis induced
by the combination, indicating that both inhibition of Akt and activation of JNK were required for the synergism. These findings
show that sorafenib interacts synergistically with bortezomib to induce apoptosis in a broad spectrum of neoplastic cell lines
and show an important role for the Akt and JNK pathways in mediating synergism. Further clinical development of this combination
seems warranted. [Mol Cancer Ther 2006;5(9):2378–87] |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-06-0235 |