Loading…

Abstract 1149: Genetic analysis of single cells

We are developing highly sensitive and quantitative genomic technologies for genetic and expression analysis of single cells or trace amount of DNA/RNA materials, using microarray and next-generation sequencing platforms. We have tested various Multiple Displacement Amplification (MDA)-based protoco...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2010-04, Vol.70 (8_Supplement), p.1149-1149
Main Authors: Fan, Jian-Bing, Chen, Jing, April, Craig, Klotzle, Brandy, Royce, Thomas, Cann, Gordon, Talasaz, AmirAli H., Islam, Saiful, Kjallquist, Una, Linnarsson, Sten
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1149
container_issue 8_Supplement
container_start_page 1149
container_title Cancer research (Chicago, Ill.)
container_volume 70
creator Fan, Jian-Bing
Chen, Jing
April, Craig
Klotzle, Brandy
Royce, Thomas
Cann, Gordon
Talasaz, AmirAli H.
Islam, Saiful
Kjallquist, Una
Linnarsson, Sten
description We are developing highly sensitive and quantitative genomic technologies for genetic and expression analysis of single cells or trace amount of DNA/RNA materials, using microarray and next-generation sequencing platforms. We have tested various Multiple Displacement Amplification (MDA)-based protocols under a variety of reaction conditions. With our current protocol and a 300K-SNP chip readout, we were able to obtain 88.3% and 93.9% call rate, and 97.4% and 99.9% call accuracy with direct cell lysis from 1 cell and 5 cells, respectively. We are also developing RNA amplification methods for high-throughput expression profiling of single cells. With our current protocol, we were able to generate reproducible expression profiles, R2 = 0.73 and 0.77, using 10 pg and 50 pg total RNA input, respectively. In addition, the profiles correlated well with those obtained with standard 100 ng total RNA input, R2 = 0.61 and 0.77, respectively. Our data show that sequencing of single-cell transcriptomes can clearly distinguish embryonic stem cells from embryonic fibroblasts and tumor cells. We are currently using these technologies to study medical specimens such as circulating tumor cells and cancer stem cells. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1149.
doi_str_mv 10.1158/1538-7445.AM10-1149
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1158_1538_7445_AM10_1149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1158_1538_7445_AM10_1149</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1158_1538_7445_AM10_11493</originalsourceid><addsrcrecordid>eNqdjksKwjAURR-iYP2swEk2kJpnE1qdFfEzceY8xJBKJLaS10l3rwFxAY4u98LhHoAVihxRVWtURcVLKVVeX1BwRLkdQfZbx5AJISquZLmZwozo8akKhcpgXd-oj8b2LEE7dnKt671lpjVhIE-saxj59h4csy4EWsCkMYHc8ptzKI6H6_7MbeyIomv0K_qniYNGoZObThY6WejkptNN8R_1BhNmQDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 1149: Genetic analysis of single cells</title><source>EZB Electronic Journals Library</source><creator>Fan, Jian-Bing ; Chen, Jing ; April, Craig ; Klotzle, Brandy ; Royce, Thomas ; Cann, Gordon ; Talasaz, AmirAli H. ; Islam, Saiful ; Kjallquist, Una ; Linnarsson, Sten</creator><creatorcontrib>Fan, Jian-Bing ; Chen, Jing ; April, Craig ; Klotzle, Brandy ; Royce, Thomas ; Cann, Gordon ; Talasaz, AmirAli H. ; Islam, Saiful ; Kjallquist, Una ; Linnarsson, Sten</creatorcontrib><description>We are developing highly sensitive and quantitative genomic technologies for genetic and expression analysis of single cells or trace amount of DNA/RNA materials, using microarray and next-generation sequencing platforms. We have tested various Multiple Displacement Amplification (MDA)-based protocols under a variety of reaction conditions. With our current protocol and a 300K-SNP chip readout, we were able to obtain 88.3% and 93.9% call rate, and 97.4% and 99.9% call accuracy with direct cell lysis from 1 cell and 5 cells, respectively. We are also developing RNA amplification methods for high-throughput expression profiling of single cells. With our current protocol, we were able to generate reproducible expression profiles, R2 = 0.73 and 0.77, using 10 pg and 50 pg total RNA input, respectively. In addition, the profiles correlated well with those obtained with standard 100 ng total RNA input, R2 = 0.61 and 0.77, respectively. Our data show that sequencing of single-cell transcriptomes can clearly distinguish embryonic stem cells from embryonic fibroblasts and tumor cells. We are currently using these technologies to study medical specimens such as circulating tumor cells and cancer stem cells. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1149.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/1538-7445.AM10-1149</identifier><language>eng</language><ispartof>Cancer research (Chicago, Ill.), 2010-04, Vol.70 (8_Supplement), p.1149-1149</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fan, Jian-Bing</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>April, Craig</creatorcontrib><creatorcontrib>Klotzle, Brandy</creatorcontrib><creatorcontrib>Royce, Thomas</creatorcontrib><creatorcontrib>Cann, Gordon</creatorcontrib><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Islam, Saiful</creatorcontrib><creatorcontrib>Kjallquist, Una</creatorcontrib><creatorcontrib>Linnarsson, Sten</creatorcontrib><title>Abstract 1149: Genetic analysis of single cells</title><title>Cancer research (Chicago, Ill.)</title><description>We are developing highly sensitive and quantitative genomic technologies for genetic and expression analysis of single cells or trace amount of DNA/RNA materials, using microarray and next-generation sequencing platforms. We have tested various Multiple Displacement Amplification (MDA)-based protocols under a variety of reaction conditions. With our current protocol and a 300K-SNP chip readout, we were able to obtain 88.3% and 93.9% call rate, and 97.4% and 99.9% call accuracy with direct cell lysis from 1 cell and 5 cells, respectively. We are also developing RNA amplification methods for high-throughput expression profiling of single cells. With our current protocol, we were able to generate reproducible expression profiles, R2 = 0.73 and 0.77, using 10 pg and 50 pg total RNA input, respectively. In addition, the profiles correlated well with those obtained with standard 100 ng total RNA input, R2 = 0.61 and 0.77, respectively. Our data show that sequencing of single-cell transcriptomes can clearly distinguish embryonic stem cells from embryonic fibroblasts and tumor cells. We are currently using these technologies to study medical specimens such as circulating tumor cells and cancer stem cells. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1149.</description><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqdjksKwjAURR-iYP2swEk2kJpnE1qdFfEzceY8xJBKJLaS10l3rwFxAY4u98LhHoAVihxRVWtURcVLKVVeX1BwRLkdQfZbx5AJISquZLmZwozo8akKhcpgXd-oj8b2LEE7dnKt671lpjVhIE-saxj59h4csy4EWsCkMYHc8ptzKI6H6_7MbeyIomv0K_qniYNGoZObThY6WejkptNN8R_1BhNmQDs</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Fan, Jian-Bing</creator><creator>Chen, Jing</creator><creator>April, Craig</creator><creator>Klotzle, Brandy</creator><creator>Royce, Thomas</creator><creator>Cann, Gordon</creator><creator>Talasaz, AmirAli H.</creator><creator>Islam, Saiful</creator><creator>Kjallquist, Una</creator><creator>Linnarsson, Sten</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100415</creationdate><title>Abstract 1149: Genetic analysis of single cells</title><author>Fan, Jian-Bing ; Chen, Jing ; April, Craig ; Klotzle, Brandy ; Royce, Thomas ; Cann, Gordon ; Talasaz, AmirAli H. ; Islam, Saiful ; Kjallquist, Una ; Linnarsson, Sten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1158_1538_7445_AM10_11493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jian-Bing</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>April, Craig</creatorcontrib><creatorcontrib>Klotzle, Brandy</creatorcontrib><creatorcontrib>Royce, Thomas</creatorcontrib><creatorcontrib>Cann, Gordon</creatorcontrib><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Islam, Saiful</creatorcontrib><creatorcontrib>Kjallquist, Una</creatorcontrib><creatorcontrib>Linnarsson, Sten</creatorcontrib><collection>CrossRef</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jian-Bing</au><au>Chen, Jing</au><au>April, Craig</au><au>Klotzle, Brandy</au><au>Royce, Thomas</au><au>Cann, Gordon</au><au>Talasaz, AmirAli H.</au><au>Islam, Saiful</au><au>Kjallquist, Una</au><au>Linnarsson, Sten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 1149: Genetic analysis of single cells</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><date>2010-04-15</date><risdate>2010</risdate><volume>70</volume><issue>8_Supplement</issue><spage>1149</spage><epage>1149</epage><pages>1149-1149</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>We are developing highly sensitive and quantitative genomic technologies for genetic and expression analysis of single cells or trace amount of DNA/RNA materials, using microarray and next-generation sequencing platforms. We have tested various Multiple Displacement Amplification (MDA)-based protocols under a variety of reaction conditions. With our current protocol and a 300K-SNP chip readout, we were able to obtain 88.3% and 93.9% call rate, and 97.4% and 99.9% call accuracy with direct cell lysis from 1 cell and 5 cells, respectively. We are also developing RNA amplification methods for high-throughput expression profiling of single cells. With our current protocol, we were able to generate reproducible expression profiles, R2 = 0.73 and 0.77, using 10 pg and 50 pg total RNA input, respectively. In addition, the profiles correlated well with those obtained with standard 100 ng total RNA input, R2 = 0.61 and 0.77, respectively. Our data show that sequencing of single-cell transcriptomes can clearly distinguish embryonic stem cells from embryonic fibroblasts and tumor cells. We are currently using these technologies to study medical specimens such as circulating tumor cells and cancer stem cells. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1149.</abstract><doi>10.1158/1538-7445.AM10-1149</doi></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2010-04, Vol.70 (8_Supplement), p.1149-1149
issn 0008-5472
1538-7445
language eng
recordid cdi_crossref_primary_10_1158_1538_7445_AM10_1149
source EZB Electronic Journals Library
title Abstract 1149: Genetic analysis of single cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%201149:%20Genetic%20analysis%20of%20single%20cells&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Fan,%20Jian-Bing&rft.date=2010-04-15&rft.volume=70&rft.issue=8_Supplement&rft.spage=1149&rft.epage=1149&rft.pages=1149-1149&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/1538-7445.AM10-1149&rft_dat=%3Ccrossref%3E10_1158_1538_7445_AM10_1149%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1158_1538_7445_AM10_11493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true