Loading…
Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth-leading cause of cancer-related death in the United States and is projected to become the second leading cause by 2030. Most patients present with advanced disease and die within 12 months of diagnosis. Recent genomic studies of primary...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2017-07, Vol.77 (13_Supplement), p.3036-3036 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c986-27bde09833bc01a3efbbca5287561ba95b041918e8cab2d9a75c3e11ae023e4e3 |
---|---|
cites | |
container_end_page | 3036 |
container_issue | 13_Supplement |
container_start_page | 3036 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 77 |
creator | Aguirre, Andrew J. Carter, Scott Camarda, Nicholas Ghazani, Arezou Nowak, Jonathan Silva, Annacarolina Da Brais, Lauren Ragon, Dorisanne McCabe, Devin Marini, Lori Anderka, Kristin Helvie, Karla Oliver, Nelly Babic, Ana Shyn, Paul Rubinson, Douglas Patel, Anuj Cleary, James McCleary, Nadine Kulke, Matthew Clancy, Thomas Doyle, Leona Hornick, Jason Ardito-Abraham, Christine Yu, Ruth Downes, Michael Evans, Ronald Moffitt, Richard A. Yeh, Jen Jen Hahn, William C. Fuchs, Charles Mayer, Robert Wagle, Nikhil Tuveson, David Garraway, Levi A. Wolpin, Brian M. |
description | Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth-leading cause of cancer-related death in the United States and is projected to become the second leading cause by 2030. Most patients present with advanced disease and die within 12 months of diagnosis. Recent genomic studies of primary pancreatic cancer resection specimens have identified several molecular alterations and genomic subtypes of the disease that may guide precision medicine approaches to clinical management. However, the molecular landscape of metastatic PDAC has been less well characterized. Moreover, biopsy-driven studies in metastatic PDAC have been historically very challenging due to the aggressive course of this disease as well as the low-volume and heterogeneous nature of biopsies that makes deep molecular characterization difficult. Insufficient genomic analysis of a patient’s tumor early in their disease course is a major barrier to enrollment on clinical trials of targeted therapies. To address these limitations, we have implemented a multi-disciplinary clinical and research biopsy protocol to enable real time comprehensive molecular characterization of metastatic PDAC biopsy specimens. We have performed core needle biopsies of metastatic lesions in the liver or peritoneal cavity in 42 patients at the time of initial presentation. A low rate of complications was observed, with only a single patient having a self-limited hemorrhagic complication after liver biopsy. On average, 4-6 separate biopsy specimens were collected from each patient for histopathology and genomic analysis. Whole exome sequencing (WES) was performed in a CLIA-certified laboratory and a comprehensive molecular report of somatic alterations and selected pathogenic germline variants was returned to the referring clinician with a typical turn-around time of 3-5 weeks. We observed a striking incidence of recurrent germline and somatic alterations in DNA-damage repair genes, such as BRCA2, ATM and CHEK2. We also observed alterations in genes with known therapeutic implications, such as BRAF, RNF43, STK11 and ROS, and in select cases, these results guided choice of second or third line therapy. In parallel to WES, we performed RNA sequencing on bulk tumor tissue and readily identified expression signatures defining multiple subtypes of tumor and stroma that may have prognostic or therapeutic implications for tumor- or stroma-directed therapies. Collectively, these results demonstrate the feasibility and va |
doi_str_mv | 10.1158/1538-7445.AM2017-3036 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1158_1538_7445_AM2017_3036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1158_1538_7445_AM2017_3036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c986-27bde09833bc01a3efbbca5287561ba95b041918e8cab2d9a75c3e11ae023e4e3</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWKuPIOQFUpPNppv1rhS1QkWQ3ofJdFYj3R-S3OjT21jxas6Z4Qycj7FbJRdKGXunjLaiqWuzWL1UUjVCS708Y7P__TmbSSmtMHVTXbKrlD6P1ihpZmxY-ZQjYOYldM_fCA4ih574Ow1jH5DjB5Q7xfANOYwDHzveU4aUjxb5BANG-pV4lBR5HjkN4A_Ep0gYUsn0tA8YBrpmFx0cEt38zTnbPT7s1huxfX16Xq-2Alu7FFXj9yRbq7VHqUBT5z2CqWxjlspDa7ysVassWQRf7VtoDGpSCkhWmmrSc2ZObzGOKUXq3BRDD_HLKekKM1fYuMLGnZi5Ul__AIHxYSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine</title><source>EZB Free E-Journals</source><creator>Aguirre, Andrew J. ; Carter, Scott ; Camarda, Nicholas ; Ghazani, Arezou ; Nowak, Jonathan ; Silva, Annacarolina Da ; Brais, Lauren ; Ragon, Dorisanne ; McCabe, Devin ; Marini, Lori ; Anderka, Kristin ; Helvie, Karla ; Oliver, Nelly ; Babic, Ana ; Shyn, Paul ; Rubinson, Douglas ; Patel, Anuj ; Cleary, James ; McCleary, Nadine ; Kulke, Matthew ; Clancy, Thomas ; Doyle, Leona ; Hornick, Jason ; Ardito-Abraham, Christine ; Yu, Ruth ; Downes, Michael ; Evans, Ronald ; Moffitt, Richard A. ; Yeh, Jen Jen ; Hahn, William C. ; Fuchs, Charles ; Mayer, Robert ; Wagle, Nikhil ; Tuveson, David ; Garraway, Levi A. ; Wolpin, Brian M.</creator><creatorcontrib>Aguirre, Andrew J. ; Carter, Scott ; Camarda, Nicholas ; Ghazani, Arezou ; Nowak, Jonathan ; Silva, Annacarolina Da ; Brais, Lauren ; Ragon, Dorisanne ; McCabe, Devin ; Marini, Lori ; Anderka, Kristin ; Helvie, Karla ; Oliver, Nelly ; Babic, Ana ; Shyn, Paul ; Rubinson, Douglas ; Patel, Anuj ; Cleary, James ; McCleary, Nadine ; Kulke, Matthew ; Clancy, Thomas ; Doyle, Leona ; Hornick, Jason ; Ardito-Abraham, Christine ; Yu, Ruth ; Downes, Michael ; Evans, Ronald ; Moffitt, Richard A. ; Yeh, Jen Jen ; Hahn, William C. ; Fuchs, Charles ; Mayer, Robert ; Wagle, Nikhil ; Tuveson, David ; Garraway, Levi A. ; Wolpin, Brian M.</creatorcontrib><description>Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth-leading cause of cancer-related death in the United States and is projected to become the second leading cause by 2030. Most patients present with advanced disease and die within 12 months of diagnosis. Recent genomic studies of primary pancreatic cancer resection specimens have identified several molecular alterations and genomic subtypes of the disease that may guide precision medicine approaches to clinical management. However, the molecular landscape of metastatic PDAC has been less well characterized. Moreover, biopsy-driven studies in metastatic PDAC have been historically very challenging due to the aggressive course of this disease as well as the low-volume and heterogeneous nature of biopsies that makes deep molecular characterization difficult. Insufficient genomic analysis of a patient’s tumor early in their disease course is a major barrier to enrollment on clinical trials of targeted therapies. To address these limitations, we have implemented a multi-disciplinary clinical and research biopsy protocol to enable real time comprehensive molecular characterization of metastatic PDAC biopsy specimens. We have performed core needle biopsies of metastatic lesions in the liver or peritoneal cavity in 42 patients at the time of initial presentation. A low rate of complications was observed, with only a single patient having a self-limited hemorrhagic complication after liver biopsy. On average, 4-6 separate biopsy specimens were collected from each patient for histopathology and genomic analysis. Whole exome sequencing (WES) was performed in a CLIA-certified laboratory and a comprehensive molecular report of somatic alterations and selected pathogenic germline variants was returned to the referring clinician with a typical turn-around time of 3-5 weeks. We observed a striking incidence of recurrent germline and somatic alterations in DNA-damage repair genes, such as BRCA2, ATM and CHEK2. We also observed alterations in genes with known therapeutic implications, such as BRAF, RNF43, STK11 and ROS, and in select cases, these results guided choice of second or third line therapy. In parallel to WES, we performed RNA sequencing on bulk tumor tissue and readily identified expression signatures defining multiple subtypes of tumor and stroma that may have prognostic or therapeutic implications for tumor- or stroma-directed therapies. Collectively, these results demonstrate the feasibility and value of real-time genomic characterization of metastatic PDAC and provide a path forward for improved stratification and enrollment of PDAC patients on molecularly defined clinical trials.
Citation Format: Andrew J. Aguirre, Scott Carter, Nicholas Camarda, Arezou Ghazani, Jonathan Nowak, Annacarolina Da Silva, Lauren Brais, Dorisanne Ragon, Devin McCabe, Lori Marini, Kristin Anderka, Karla Helvie, Nelly Oliver, Ana Babic, Paul Shyn, Douglas Rubinson, Anuj Patel, James Cleary, Nadine McCleary, Matthew Kulke, Thomas Clancy, Leona Doyle, Jason Hornick, Christine Ardito-Abraham, Ruth Yu, Michael Downes, Ronald Evans, Richard A. Moffitt, Jen Jen Yeh, William C. Hahn, Charles Fuchs, Robert Mayer, Nikhil Wagle, David Tuveson, Levi A. Garraway, Brian M. Wolpin. Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3036. doi:10.1158/1538-7445.AM2017-3036</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/1538-7445.AM2017-3036</identifier><language>eng</language><ispartof>Cancer research (Chicago, Ill.), 2017-07, Vol.77 (13_Supplement), p.3036-3036</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c986-27bde09833bc01a3efbbca5287561ba95b041918e8cab2d9a75c3e11ae023e4e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aguirre, Andrew J.</creatorcontrib><creatorcontrib>Carter, Scott</creatorcontrib><creatorcontrib>Camarda, Nicholas</creatorcontrib><creatorcontrib>Ghazani, Arezou</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Silva, Annacarolina Da</creatorcontrib><creatorcontrib>Brais, Lauren</creatorcontrib><creatorcontrib>Ragon, Dorisanne</creatorcontrib><creatorcontrib>McCabe, Devin</creatorcontrib><creatorcontrib>Marini, Lori</creatorcontrib><creatorcontrib>Anderka, Kristin</creatorcontrib><creatorcontrib>Helvie, Karla</creatorcontrib><creatorcontrib>Oliver, Nelly</creatorcontrib><creatorcontrib>Babic, Ana</creatorcontrib><creatorcontrib>Shyn, Paul</creatorcontrib><creatorcontrib>Rubinson, Douglas</creatorcontrib><creatorcontrib>Patel, Anuj</creatorcontrib><creatorcontrib>Cleary, James</creatorcontrib><creatorcontrib>McCleary, Nadine</creatorcontrib><creatorcontrib>Kulke, Matthew</creatorcontrib><creatorcontrib>Clancy, Thomas</creatorcontrib><creatorcontrib>Doyle, Leona</creatorcontrib><creatorcontrib>Hornick, Jason</creatorcontrib><creatorcontrib>Ardito-Abraham, Christine</creatorcontrib><creatorcontrib>Yu, Ruth</creatorcontrib><creatorcontrib>Downes, Michael</creatorcontrib><creatorcontrib>Evans, Ronald</creatorcontrib><creatorcontrib>Moffitt, Richard A.</creatorcontrib><creatorcontrib>Yeh, Jen Jen</creatorcontrib><creatorcontrib>Hahn, William C.</creatorcontrib><creatorcontrib>Fuchs, Charles</creatorcontrib><creatorcontrib>Mayer, Robert</creatorcontrib><creatorcontrib>Wagle, Nikhil</creatorcontrib><creatorcontrib>Tuveson, David</creatorcontrib><creatorcontrib>Garraway, Levi A.</creatorcontrib><creatorcontrib>Wolpin, Brian M.</creatorcontrib><title>Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine</title><title>Cancer research (Chicago, Ill.)</title><description>Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth-leading cause of cancer-related death in the United States and is projected to become the second leading cause by 2030. Most patients present with advanced disease and die within 12 months of diagnosis. Recent genomic studies of primary pancreatic cancer resection specimens have identified several molecular alterations and genomic subtypes of the disease that may guide precision medicine approaches to clinical management. However, the molecular landscape of metastatic PDAC has been less well characterized. Moreover, biopsy-driven studies in metastatic PDAC have been historically very challenging due to the aggressive course of this disease as well as the low-volume and heterogeneous nature of biopsies that makes deep molecular characterization difficult. Insufficient genomic analysis of a patient’s tumor early in their disease course is a major barrier to enrollment on clinical trials of targeted therapies. To address these limitations, we have implemented a multi-disciplinary clinical and research biopsy protocol to enable real time comprehensive molecular characterization of metastatic PDAC biopsy specimens. We have performed core needle biopsies of metastatic lesions in the liver or peritoneal cavity in 42 patients at the time of initial presentation. A low rate of complications was observed, with only a single patient having a self-limited hemorrhagic complication after liver biopsy. On average, 4-6 separate biopsy specimens were collected from each patient for histopathology and genomic analysis. Whole exome sequencing (WES) was performed in a CLIA-certified laboratory and a comprehensive molecular report of somatic alterations and selected pathogenic germline variants was returned to the referring clinician with a typical turn-around time of 3-5 weeks. We observed a striking incidence of recurrent germline and somatic alterations in DNA-damage repair genes, such as BRCA2, ATM and CHEK2. We also observed alterations in genes with known therapeutic implications, such as BRAF, RNF43, STK11 and ROS, and in select cases, these results guided choice of second or third line therapy. In parallel to WES, we performed RNA sequencing on bulk tumor tissue and readily identified expression signatures defining multiple subtypes of tumor and stroma that may have prognostic or therapeutic implications for tumor- or stroma-directed therapies. Collectively, these results demonstrate the feasibility and value of real-time genomic characterization of metastatic PDAC and provide a path forward for improved stratification and enrollment of PDAC patients on molecularly defined clinical trials.
Citation Format: Andrew J. Aguirre, Scott Carter, Nicholas Camarda, Arezou Ghazani, Jonathan Nowak, Annacarolina Da Silva, Lauren Brais, Dorisanne Ragon, Devin McCabe, Lori Marini, Kristin Anderka, Karla Helvie, Nelly Oliver, Ana Babic, Paul Shyn, Douglas Rubinson, Anuj Patel, James Cleary, Nadine McCleary, Matthew Kulke, Thomas Clancy, Leona Doyle, Jason Hornick, Christine Ardito-Abraham, Ruth Yu, Michael Downes, Ronald Evans, Richard A. Moffitt, Jen Jen Yeh, William C. Hahn, Charles Fuchs, Robert Mayer, Nikhil Wagle, David Tuveson, Levi A. Garraway, Brian M. Wolpin. Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3036. doi:10.1158/1538-7445.AM2017-3036</description><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KAzEQhYMoWKuPIOQFUpPNppv1rhS1QkWQ3ofJdFYj3R-S3OjT21jxas6Z4Qycj7FbJRdKGXunjLaiqWuzWL1UUjVCS708Y7P__TmbSSmtMHVTXbKrlD6P1ihpZmxY-ZQjYOYldM_fCA4ih574Ow1jH5DjB5Q7xfANOYwDHzveU4aUjxb5BANG-pV4lBR5HjkN4A_Ep0gYUsn0tA8YBrpmFx0cEt38zTnbPT7s1huxfX16Xq-2Alu7FFXj9yRbq7VHqUBT5z2CqWxjlspDa7ysVassWQRf7VtoDGpSCkhWmmrSc2ZObzGOKUXq3BRDD_HLKekKM1fYuMLGnZi5Ul__AIHxYSc</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Aguirre, Andrew J.</creator><creator>Carter, Scott</creator><creator>Camarda, Nicholas</creator><creator>Ghazani, Arezou</creator><creator>Nowak, Jonathan</creator><creator>Silva, Annacarolina Da</creator><creator>Brais, Lauren</creator><creator>Ragon, Dorisanne</creator><creator>McCabe, Devin</creator><creator>Marini, Lori</creator><creator>Anderka, Kristin</creator><creator>Helvie, Karla</creator><creator>Oliver, Nelly</creator><creator>Babic, Ana</creator><creator>Shyn, Paul</creator><creator>Rubinson, Douglas</creator><creator>Patel, Anuj</creator><creator>Cleary, James</creator><creator>McCleary, Nadine</creator><creator>Kulke, Matthew</creator><creator>Clancy, Thomas</creator><creator>Doyle, Leona</creator><creator>Hornick, Jason</creator><creator>Ardito-Abraham, Christine</creator><creator>Yu, Ruth</creator><creator>Downes, Michael</creator><creator>Evans, Ronald</creator><creator>Moffitt, Richard A.</creator><creator>Yeh, Jen Jen</creator><creator>Hahn, William C.</creator><creator>Fuchs, Charles</creator><creator>Mayer, Robert</creator><creator>Wagle, Nikhil</creator><creator>Tuveson, David</creator><creator>Garraway, Levi A.</creator><creator>Wolpin, Brian M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine</title><author>Aguirre, Andrew J. ; Carter, Scott ; Camarda, Nicholas ; Ghazani, Arezou ; Nowak, Jonathan ; Silva, Annacarolina Da ; Brais, Lauren ; Ragon, Dorisanne ; McCabe, Devin ; Marini, Lori ; Anderka, Kristin ; Helvie, Karla ; Oliver, Nelly ; Babic, Ana ; Shyn, Paul ; Rubinson, Douglas ; Patel, Anuj ; Cleary, James ; McCleary, Nadine ; Kulke, Matthew ; Clancy, Thomas ; Doyle, Leona ; Hornick, Jason ; Ardito-Abraham, Christine ; Yu, Ruth ; Downes, Michael ; Evans, Ronald ; Moffitt, Richard A. ; Yeh, Jen Jen ; Hahn, William C. ; Fuchs, Charles ; Mayer, Robert ; Wagle, Nikhil ; Tuveson, David ; Garraway, Levi A. ; Wolpin, Brian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c986-27bde09833bc01a3efbbca5287561ba95b041918e8cab2d9a75c3e11ae023e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguirre, Andrew J.</creatorcontrib><creatorcontrib>Carter, Scott</creatorcontrib><creatorcontrib>Camarda, Nicholas</creatorcontrib><creatorcontrib>Ghazani, Arezou</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Silva, Annacarolina Da</creatorcontrib><creatorcontrib>Brais, Lauren</creatorcontrib><creatorcontrib>Ragon, Dorisanne</creatorcontrib><creatorcontrib>McCabe, Devin</creatorcontrib><creatorcontrib>Marini, Lori</creatorcontrib><creatorcontrib>Anderka, Kristin</creatorcontrib><creatorcontrib>Helvie, Karla</creatorcontrib><creatorcontrib>Oliver, Nelly</creatorcontrib><creatorcontrib>Babic, Ana</creatorcontrib><creatorcontrib>Shyn, Paul</creatorcontrib><creatorcontrib>Rubinson, Douglas</creatorcontrib><creatorcontrib>Patel, Anuj</creatorcontrib><creatorcontrib>Cleary, James</creatorcontrib><creatorcontrib>McCleary, Nadine</creatorcontrib><creatorcontrib>Kulke, Matthew</creatorcontrib><creatorcontrib>Clancy, Thomas</creatorcontrib><creatorcontrib>Doyle, Leona</creatorcontrib><creatorcontrib>Hornick, Jason</creatorcontrib><creatorcontrib>Ardito-Abraham, Christine</creatorcontrib><creatorcontrib>Yu, Ruth</creatorcontrib><creatorcontrib>Downes, Michael</creatorcontrib><creatorcontrib>Evans, Ronald</creatorcontrib><creatorcontrib>Moffitt, Richard A.</creatorcontrib><creatorcontrib>Yeh, Jen Jen</creatorcontrib><creatorcontrib>Hahn, William C.</creatorcontrib><creatorcontrib>Fuchs, Charles</creatorcontrib><creatorcontrib>Mayer, Robert</creatorcontrib><creatorcontrib>Wagle, Nikhil</creatorcontrib><creatorcontrib>Tuveson, David</creatorcontrib><creatorcontrib>Garraway, Levi A.</creatorcontrib><creatorcontrib>Wolpin, Brian M.</creatorcontrib><collection>CrossRef</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguirre, Andrew J.</au><au>Carter, Scott</au><au>Camarda, Nicholas</au><au>Ghazani, Arezou</au><au>Nowak, Jonathan</au><au>Silva, Annacarolina Da</au><au>Brais, Lauren</au><au>Ragon, Dorisanne</au><au>McCabe, Devin</au><au>Marini, Lori</au><au>Anderka, Kristin</au><au>Helvie, Karla</au><au>Oliver, Nelly</au><au>Babic, Ana</au><au>Shyn, Paul</au><au>Rubinson, Douglas</au><au>Patel, Anuj</au><au>Cleary, James</au><au>McCleary, Nadine</au><au>Kulke, Matthew</au><au>Clancy, Thomas</au><au>Doyle, Leona</au><au>Hornick, Jason</au><au>Ardito-Abraham, Christine</au><au>Yu, Ruth</au><au>Downes, Michael</au><au>Evans, Ronald</au><au>Moffitt, Richard A.</au><au>Yeh, Jen Jen</au><au>Hahn, William C.</au><au>Fuchs, Charles</au><au>Mayer, Robert</au><au>Wagle, Nikhil</au><au>Tuveson, David</au><au>Garraway, Levi A.</au><au>Wolpin, Brian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>77</volume><issue>13_Supplement</issue><spage>3036</spage><epage>3036</epage><pages>3036-3036</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth-leading cause of cancer-related death in the United States and is projected to become the second leading cause by 2030. Most patients present with advanced disease and die within 12 months of diagnosis. Recent genomic studies of primary pancreatic cancer resection specimens have identified several molecular alterations and genomic subtypes of the disease that may guide precision medicine approaches to clinical management. However, the molecular landscape of metastatic PDAC has been less well characterized. Moreover, biopsy-driven studies in metastatic PDAC have been historically very challenging due to the aggressive course of this disease as well as the low-volume and heterogeneous nature of biopsies that makes deep molecular characterization difficult. Insufficient genomic analysis of a patient’s tumor early in their disease course is a major barrier to enrollment on clinical trials of targeted therapies. To address these limitations, we have implemented a multi-disciplinary clinical and research biopsy protocol to enable real time comprehensive molecular characterization of metastatic PDAC biopsy specimens. We have performed core needle biopsies of metastatic lesions in the liver or peritoneal cavity in 42 patients at the time of initial presentation. A low rate of complications was observed, with only a single patient having a self-limited hemorrhagic complication after liver biopsy. On average, 4-6 separate biopsy specimens were collected from each patient for histopathology and genomic analysis. Whole exome sequencing (WES) was performed in a CLIA-certified laboratory and a comprehensive molecular report of somatic alterations and selected pathogenic germline variants was returned to the referring clinician with a typical turn-around time of 3-5 weeks. We observed a striking incidence of recurrent germline and somatic alterations in DNA-damage repair genes, such as BRCA2, ATM and CHEK2. We also observed alterations in genes with known therapeutic implications, such as BRAF, RNF43, STK11 and ROS, and in select cases, these results guided choice of second or third line therapy. In parallel to WES, we performed RNA sequencing on bulk tumor tissue and readily identified expression signatures defining multiple subtypes of tumor and stroma that may have prognostic or therapeutic implications for tumor- or stroma-directed therapies. Collectively, these results demonstrate the feasibility and value of real-time genomic characterization of metastatic PDAC and provide a path forward for improved stratification and enrollment of PDAC patients on molecularly defined clinical trials.
Citation Format: Andrew J. Aguirre, Scott Carter, Nicholas Camarda, Arezou Ghazani, Jonathan Nowak, Annacarolina Da Silva, Lauren Brais, Dorisanne Ragon, Devin McCabe, Lori Marini, Kristin Anderka, Karla Helvie, Nelly Oliver, Ana Babic, Paul Shyn, Douglas Rubinson, Anuj Patel, James Cleary, Nadine McCleary, Matthew Kulke, Thomas Clancy, Leona Doyle, Jason Hornick, Christine Ardito-Abraham, Ruth Yu, Michael Downes, Ronald Evans, Richard A. Moffitt, Jen Jen Yeh, William C. Hahn, Charles Fuchs, Robert Mayer, Nikhil Wagle, David Tuveson, Levi A. Garraway, Brian M. Wolpin. Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3036. doi:10.1158/1538-7445.AM2017-3036</abstract><doi>10.1158/1538-7445.AM2017-3036</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2017-07, Vol.77 (13_Supplement), p.3036-3036 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_crossref_primary_10_1158_1538_7445_AM2017_3036 |
source | EZB Free E-Journals |
title | Abstract 3036: Real-time genomic characterization of metastatic pancreatic cancer to enable precision medicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%203036:%20Real-time%20genomic%20characterization%20of%20metastatic%20pancreatic%20cancer%20to%20enable%20precision%20medicine&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Aguirre,%20Andrew%20J.&rft.date=2017-07-01&rft.volume=77&rft.issue=13_Supplement&rft.spage=3036&rft.epage=3036&rft.pages=3036-3036&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/1538-7445.AM2017-3036&rft_dat=%3Ccrossref%3E10_1158_1538_7445_AM2017_3036%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c986-27bde09833bc01a3efbbca5287561ba95b041918e8cab2d9a75c3e11ae023e4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |