Loading…
Abstract 3549: C-MYC sensitizes GBM with primitive features to glutamine metabolism disruption
Glioblastoma (GBM) is among the most lethal of known human cancers, with a median survival of less than 15 months. The highly infiltrative nature and genetic heterogeneity of GBM renders treatment difficult. Therefore, better and more targeted therapies are needed for patients with GBM. There is a n...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2017-07, Vol.77 (13_Supplement), p.3549-3549 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glioblastoma (GBM) is among the most lethal of known human cancers, with a median survival of less than 15 months. The highly infiltrative nature and genetic heterogeneity of GBM renders treatment difficult. Therefore, better and more targeted therapies are needed for patients with GBM. There is a new WHO subset of GBM that contains primitive neuronal components (GBM-PNC). These tumors can arise from a histologically classic GBM, and often the GBM-PNC portions of the tumor contain C-MYC or N-MYC amplifications. High MYC expression is known to alter cellular metabolism, increasing reliance on glutamine, which may create opportunities for therapeutic intervention. We hypothesized that depriving GBM-PNC cells of glutamine using metabolic inhibitors would suppress growth and tumorigenicity. To create genetically appropriate GBM-PNC models, we derived cortex (CTX) human neural stem cells and transformed them through lentiviral expression of mutant p53, constitutively-active AKT and hTERT. Transformed neurospheres were then lentivirally transduced with either C-MYC or BMI1. These models formed aggressive tumors in mice and recapitulated the histological features of GBM with expression of NESTIN, GFAP, and MAP2. When treated with the glutamine metabolic inhibitors DON or Acivicin, transformed neurospheres that expressed C-MYC had decreased cellular proliferation (BrdU incorporation, P |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/1538-7445.AM2017-3549 |