Loading…

Abstract 2701: Functionally specialized subsets of exhausted CD8+ T cells mediate tumor control and differentially respond to checkpoint blockade

T cell dysfunction in the tumor microenvironment (TME) is a hallmark of many cancers. Reinvigoration of T cell function by PD-1 checkpoint blockade can result in striking clinical responses, but is only effective in a minority of patients. The basis for T cell dysfunction in the TME, as well as the...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2019-07, Vol.79 (13_Supplement), p.2701-2701
Main Authors: Miller, Brian C., Sen, Debattama R., Abosy, Rose Al, Bi, Kevin, Virkud, Yamini V., LaFleur, Martin W., Yates, Kathleen B., Lako, Ana, Felt, Kristen, Naik, Girish S., Manos, Michael, Gjini, Evisa, Hodi, F. Stephen, Rodig, Scott J., Sharpe, Arlene H., Haining, W. Nicholas
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T cell dysfunction in the tumor microenvironment (TME) is a hallmark of many cancers. Reinvigoration of T cell function by PD-1 checkpoint blockade can result in striking clinical responses, but is only effective in a minority of patients. The basis for T cell dysfunction in the TME, as well as the mechanisms by which anti-PD-1 therapy acts on dysfunctional T cells are not fully understood. Here we show that anti-PD-1 therapy acts on a specific subpopulation of CD8+ tumor-infiltrating lymphocytes (TILs) in melanoma mouse models, which can also be found in patients with melanoma. We find that dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of T cell exhaustion, mirroring those seen in chronic viral infection. Similar to chronic viral infection, exhausted CD8+ TILs contain a subpopulation of “progenitor exhausted” T cells that have a distinct regulatory state. Progenitor exhausted TILs also have critical functional attributes that are not shared by the majority “terminally exhausted” TILs: they retain more polyfunctionality, persist following transfer into tumor-bearing mice, and differentiate to repopulate terminally exhausted TILs in the TME. As a result, progenitor exhausted CD8+ TILs are better able to control tumor growth than terminally exhausted cells. Progenitor exhausted, but not terminally exhausted, CD8+ TILs can respond to anti-PD-1 therapy but this occurs without reversion of their exhausted epigenetic state. Human melanomas contain CD8+ T cells with a progenitor exhausted phenotype and patients with a higher fraction of this subpopulation in their tumors have a significantly longer duration of response to combination checkpoint blockade therapy. Therefore, approaches to expand progenitor exhausted CD8+ T cells in the tumor microenvironment may be an important component of improving checkpoint blockade response. Citation Format: Brian C. Miller, Debattama R. Sen, Rose Al Abosy, Kevin Bi, Yamini V. Virkud, Martin W. LaFleur, Kathleen B. Yates, Ana Lako, Kristen Felt, Girish S. Naik, Michael Manos, Evisa Gjini, F. Stephen Hodi, Scott J. Rodig, Arlene H. Sharpe, W. Nicholas Haining. Functionally specialized subsets of exhausted CD8+ T cells mediate tumor control and differentially respond to checkpoint blockade [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2701.
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2019-2701