Loading…

Abstract LB078: Hexyl-(cuban-1-yl-methyl)-biguanide (HCB) inhibits hormone therapy resistant breast cancer cells, in part by Inhibiting CYP3A4 arachidonic acid epoxygenase activity

Introduction: Small molecule therapeutics of estrogen receptor-positive/HER2-negative breast cancer remains an area of active investigation where novel agents are greatly needed for treatment of hormone therapy resistant metastatic disease. The biguanide hexyl-benzyl-biguanide (HBB) is a potent inhi...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2021-07, Vol.81 (13_Supplement), p.LB078-LB078
Main Authors: Guo, Zhijun, Lei, Jianxun, Hong, Kwon Ho, Norris, Beverly, Flory, Craig M., Jayaraman, Swaathi, McDermott, Connor, Ambrose, Elizabeth, Sevrioukova, Irina, Poulos, Tom, Denisov, Ilia, Sliga, Stephen, Schumacher, Robert J., Georg, Gunda I., Hawse, John R., Goetz, Matthew P., Potter, David A.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction: Small molecule therapeutics of estrogen receptor-positive/HER2-negative breast cancer remains an area of active investigation where novel agents are greatly needed for treatment of hormone therapy resistant metastatic disease. The biguanide hexyl-benzyl-biguanide (HBB) is a potent inhibitor of CYP3A4 arachidonic acid (AA) epoxygenase activity and inhibits breast cancer cell proliferation and MCF-7 breast cancer tumor growth in nude mice. To explore the impact of bioisosteric substitution of the benzyl moiety of HBB with a cubane moiety, we synthesized hexyl-(cuban-1-yl-methyl)-biguanide (HCB) and tested its potency for the inhibition of the cognate CYP3A4 target AA epoxygenase activity as well as breast cancer cell proliferation of hormone therapy sensitive and resistant cell lines. Results: HCB selectively inhibited CYP3A4-mediated biosynthesis of (±)-14,15-EET with an IC50 of 4.7±0.2 uM vs. 64.8±6.5 uM for 8,9-EET and 26.5±1.9 uM for 11,12-EET. At 24 hours, HCB inhibited proliferation of MCF-7 (ER+HER2-), BT474 (ER+HER2+) and MDA-MB-231 (ER-HER2-) cells at IC50 of 8.4±1.2, 11±1.3 and 15±0.9 uM, respectively. At 48 hours, HCB inhibited proliferation of aromatase inhibitor and fulvestrant resistant (LR,FR), and cyclin dependent kinase inhibitor (CDKi) palbociclib resistant (LR,FR,PR) MCF-7 cell lines; LR,FR MCF-7AC1 (IC50 =1.34±0.1 uM) and LR,FR,PR MCF-7AC1 (IC50 =1.64±0.2 uM). Addition of 14,15-EET (1 uM) partially rescues MCF-7 cells from HCB-mediated inhibition of proliferation. OXPHOS is promoted, in part, by EETs. HCB is a potent OXPHOS inhibitor and rapidly inhibits O2 consumption of the MCF-7 and ZR75 (ER+HER2-) cells in a dose-dependent fashion (P
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2021-LB078