Loading…

Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms

PD-L1 immunohistochemistry (IHC) is routinely used to predict the clinical response to immune checkpoint inhibitors (ICIs); however, multiple assays and antibodies have been used. This study aimed to evaluate the potential of targeted transcriptome and artificial intelligence (AI) to determine PD-L1...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2023-04, Vol.83 (7_Supplement), p.4337-4337
Main Authors: Charifa, Ahmad, Lam, Alfonso, Zhang, Hong, Ip, Andrew, Pecora, Andrew, Waintraub, Stanley, Graham, Deena, McNamara, Donna, Gutierrez, Martin, Jennis, Andrew, Sharma, Ipsa, Estella, Jeffrey, Ma, Wanlong, Goy, Andre, Albitar, Maher
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4337
container_issue 7_Supplement
container_start_page 4337
container_title Cancer research (Chicago, Ill.)
container_volume 83
creator Charifa, Ahmad
Lam, Alfonso
Zhang, Hong
Ip, Andrew
Pecora, Andrew
Waintraub, Stanley
Graham, Deena
McNamara, Donna
Gutierrez, Martin
Jennis, Andrew
Sharma, Ipsa
Estella, Jeffrey
Ma, Wanlong
Goy, Andre
Albitar, Maher
description PD-L1 immunohistochemistry (IHC) is routinely used to predict the clinical response to immune checkpoint inhibitors (ICIs); however, multiple assays and antibodies have been used. This study aimed to evaluate the potential of targeted transcriptome and artificial intelligence (AI) to determine PD-L1 RNA expression levels and predict the ICI response compared to traditional IHC. RNA from 396 solid tumors samples was sequenced using next-generation sequencing (NGS) with a targeted 1408-gene panel. RNA expression and PD-L1 IHC were assessed across a broad range of PD-L1 expression levels. The geometric mean naïve Bayesian (GMNB) classifier was used to predict the PD-L1 status. PD-L1 RNA levels assessed by NGS demonstrated robust linearity across high and low expression ranges, and those assessed using NGS and IHC (Tumor cells (TC), Tumor Proportion Score (TPS) and tumor-infiltrating immune cells (ICs) were highly correlated (Tables 1). RNA sequencing provided in-depth information on the tumor microenvironment and immune response, including CD19, CD22, CD8A, CTLA4, and PD-L2 expression status. Sub-analyses showed a sustained correlation of mRNA expression with IHC (TPS and ICs) across different solid tumor types. Machine learning showed high accuracy in predicting PD-L1 status, with the area under the curve varying between 0.988 and 0.920. Targeted transcriptome sequencing combined with AI is highly useful for predicting PD-L1 status. Measuring PD-L1 mRNA expression by NGS is comparable to measuring PD-L1 expression by IHC for predicting ICI response. RNA expression has the added advantages of being amenable to standardization and avoidance of interpretation bias, along with an in-depth evaluation of the tumor microenvironment. Correlation between PD-L1 expression levels and PD-L1 IHC results IHC test results Variable Cases (N) Mean Median Range Lower Quartile Upper Quartile 10th Percentile 90th Percentile Std. Dev. TC1% CD274 90.00 14.87 10.11 0.62 - 77.53 4.60 18.62 2.95 32.35 15.75 TC10% CD274 46.00 20.81 14.03 2.90 - 77.53 8.67 26.32 4.21 51.02 17.33 IC1% CD274 129.00 9.38 5.43 0.29 - 77.53 3.21 10.31 1.74 19.05 12.13 IC10% CD274 36.00 12.50 8.52 0.29 - 77.53 4.72 13.80 4.18 31.83 13.9
doi_str_mv 10.1158/1538-7445.AM2023-4337
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1158_1538_7445_AM2023_4337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1158_1538_7445_AM2023_4337</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1158_1538_7445_AM2023_43373</originalsourceid><addsrcrecordid>eNqdj8tKBDEQRYMoOD4-Qagf6DGZdJjB3eADFwqzcB_KdLotSXeGVDXi3ztBEdeu6lLcA_codWX00hi3uTbObpp127rl9nmlV7ZprV0fqcXv__hPPlVnzO9aa2e0W6iP7StLwSBQoRvYldhREJoG2N01TwZYUGYGmoBzog5kHnNhmLlWDuTEodBe8kgBOhQEnDrAItRTIEwHUGJKNMQpRMA05ELyNvKFOukxcbz8uefKPdy_3D42oWTmEnu_LzRi-fRG-2rpq4GvBv7b0tfB9r_cF0FKXPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Charifa, Ahmad ; Lam, Alfonso ; Zhang, Hong ; Ip, Andrew ; Pecora, Andrew ; Waintraub, Stanley ; Graham, Deena ; McNamara, Donna ; Gutierrez, Martin ; Jennis, Andrew ; Sharma, Ipsa ; Estella, Jeffrey ; Ma, Wanlong ; Goy, Andre ; Albitar, Maher</creator><creatorcontrib>Charifa, Ahmad ; Lam, Alfonso ; Zhang, Hong ; Ip, Andrew ; Pecora, Andrew ; Waintraub, Stanley ; Graham, Deena ; McNamara, Donna ; Gutierrez, Martin ; Jennis, Andrew ; Sharma, Ipsa ; Estella, Jeffrey ; Ma, Wanlong ; Goy, Andre ; Albitar, Maher</creatorcontrib><description><![CDATA[PD-L1 immunohistochemistry (IHC) is routinely used to predict the clinical response to immune checkpoint inhibitors (ICIs); however, multiple assays and antibodies have been used. This study aimed to evaluate the potential of targeted transcriptome and artificial intelligence (AI) to determine PD-L1 RNA expression levels and predict the ICI response compared to traditional IHC. RNA from 396 solid tumors samples was sequenced using next-generation sequencing (NGS) with a targeted 1408-gene panel. RNA expression and PD-L1 IHC were assessed across a broad range of PD-L1 expression levels. The geometric mean naïve Bayesian (GMNB) classifier was used to predict the PD-L1 status. PD-L1 RNA levels assessed by NGS demonstrated robust linearity across high and low expression ranges, and those assessed using NGS and IHC (Tumor cells (TC), Tumor Proportion Score (TPS) and tumor-infiltrating immune cells (ICs) were highly correlated (Tables 1). RNA sequencing provided in-depth information on the tumor microenvironment and immune response, including CD19, CD22, CD8A, CTLA4, and PD-L2 expression status. Sub-analyses showed a sustained correlation of mRNA expression with IHC (TPS and ICs) across different solid tumor types. Machine learning showed high accuracy in predicting PD-L1 status, with the area under the curve varying between 0.988 and 0.920. Targeted transcriptome sequencing combined with AI is highly useful for predicting PD-L1 status. Measuring PD-L1 mRNA expression by NGS is comparable to measuring PD-L1 expression by IHC for predicting ICI response. RNA expression has the added advantages of being amenable to standardization and avoidance of interpretation bias, along with an in-depth evaluation of the tumor microenvironment. Correlation between PD-L1 expression levels and PD-L1 IHC results IHC test results Variable Cases (N) Mean Median Range Lower Quartile Upper Quartile 10th Percentile 90th Percentile Std. Dev. TC<1% CD274 223.00 4.49 2.97 0.00 - 25.99 1.79 5.73 1.07 9.16 4.32 TC>1% CD274 90.00 14.87 10.11 0.62 - 77.53 4.60 18.62 2.95 32.35 15.75 TC<10% CD274 267.00 5.17 3.36 0.00 - 72.72 1.94 6.43 1.14 10.71 6.14 TC>10% CD274 46.00 20.81 14.03 2.90 - 77.53 8.67 26.32 4.21 51.02 17.33 IC<1% CD274 133.00 3.95 2.66 0.00 - 25.99 1.71 4.03 0.99 7.95 4.56 IC>1% CD274 129.00 9.38 5.43 0.29 - 77.53 3.21 10.31 1.74 19.05 12.13 IC<10% CD274 226.00 5.69 3.03 0.00 - 72.72 1.92 6.09 1.15 12.25 8.24 IC>10% CD274 36.00 12.50 8.52 0.29 - 77.53 4.72 13.80 4.18 31.83 13.95 TPS<1% CD274 143.00 3.36 2.35 0.00 - 25.99 1.41 3.58 0.53 7.40 3.87 TPS>1% CD274 207.00 10.19 5.63 0.29 - 133.81 3.03 11.65 1.74 22.25 14.74 TPS<10% CD274 252.00 4.25 2.87 0.00 - 72.72 1.74 4.96 0.92 8.70 5.81 TPS>10% CD274 98.00 15.50 9.67 0.29 - 133.81 4.91 18.74 2.90 31.87 18.57 TPS<30% CD274 319.00 5.35 3.32 0.00 - 72.72 1.94 6.43 1.06 12.00 6.48 TPS>30% CD274 31.00 28.50 18.62 2.90 - 133.81 11.47 35.94 6.67 52.69 27.31 Citation Format: Ahmad Charifa, Alfonso Lam, Hong Zhang, Andrew Ip, Andrew Pecora, Stanley Waintraub, Deena Graham, Donna McNamara, Martin Gutierrez, Andrew Jennis, Ipsa Sharma, Jeffrey Estella, Wanlong Ma, Andre Goy, Maher Albitar. Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4337.]]></description><identifier>ISSN: 1538-7445</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/1538-7445.AM2023-4337</identifier><language>eng</language><ispartof>Cancer research (Chicago, Ill.), 2023-04, Vol.83 (7_Supplement), p.4337-4337</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Charifa, Ahmad</creatorcontrib><creatorcontrib>Lam, Alfonso</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Ip, Andrew</creatorcontrib><creatorcontrib>Pecora, Andrew</creatorcontrib><creatorcontrib>Waintraub, Stanley</creatorcontrib><creatorcontrib>Graham, Deena</creatorcontrib><creatorcontrib>McNamara, Donna</creatorcontrib><creatorcontrib>Gutierrez, Martin</creatorcontrib><creatorcontrib>Jennis, Andrew</creatorcontrib><creatorcontrib>Sharma, Ipsa</creatorcontrib><creatorcontrib>Estella, Jeffrey</creatorcontrib><creatorcontrib>Ma, Wanlong</creatorcontrib><creatorcontrib>Goy, Andre</creatorcontrib><creatorcontrib>Albitar, Maher</creatorcontrib><title>Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms</title><title>Cancer research (Chicago, Ill.)</title><description><![CDATA[PD-L1 immunohistochemistry (IHC) is routinely used to predict the clinical response to immune checkpoint inhibitors (ICIs); however, multiple assays and antibodies have been used. This study aimed to evaluate the potential of targeted transcriptome and artificial intelligence (AI) to determine PD-L1 RNA expression levels and predict the ICI response compared to traditional IHC. RNA from 396 solid tumors samples was sequenced using next-generation sequencing (NGS) with a targeted 1408-gene panel. RNA expression and PD-L1 IHC were assessed across a broad range of PD-L1 expression levels. The geometric mean naïve Bayesian (GMNB) classifier was used to predict the PD-L1 status. PD-L1 RNA levels assessed by NGS demonstrated robust linearity across high and low expression ranges, and those assessed using NGS and IHC (Tumor cells (TC), Tumor Proportion Score (TPS) and tumor-infiltrating immune cells (ICs) were highly correlated (Tables 1). RNA sequencing provided in-depth information on the tumor microenvironment and immune response, including CD19, CD22, CD8A, CTLA4, and PD-L2 expression status. Sub-analyses showed a sustained correlation of mRNA expression with IHC (TPS and ICs) across different solid tumor types. Machine learning showed high accuracy in predicting PD-L1 status, with the area under the curve varying between 0.988 and 0.920. Targeted transcriptome sequencing combined with AI is highly useful for predicting PD-L1 status. Measuring PD-L1 mRNA expression by NGS is comparable to measuring PD-L1 expression by IHC for predicting ICI response. RNA expression has the added advantages of being amenable to standardization and avoidance of interpretation bias, along with an in-depth evaluation of the tumor microenvironment. Correlation between PD-L1 expression levels and PD-L1 IHC results IHC test results Variable Cases (N) Mean Median Range Lower Quartile Upper Quartile 10th Percentile 90th Percentile Std. Dev. TC<1% CD274 223.00 4.49 2.97 0.00 - 25.99 1.79 5.73 1.07 9.16 4.32 TC>1% CD274 90.00 14.87 10.11 0.62 - 77.53 4.60 18.62 2.95 32.35 15.75 TC<10% CD274 267.00 5.17 3.36 0.00 - 72.72 1.94 6.43 1.14 10.71 6.14 TC>10% CD274 46.00 20.81 14.03 2.90 - 77.53 8.67 26.32 4.21 51.02 17.33 IC<1% CD274 133.00 3.95 2.66 0.00 - 25.99 1.71 4.03 0.99 7.95 4.56 IC>1% CD274 129.00 9.38 5.43 0.29 - 77.53 3.21 10.31 1.74 19.05 12.13 IC<10% CD274 226.00 5.69 3.03 0.00 - 72.72 1.92 6.09 1.15 12.25 8.24 IC>10% CD274 36.00 12.50 8.52 0.29 - 77.53 4.72 13.80 4.18 31.83 13.95 TPS<1% CD274 143.00 3.36 2.35 0.00 - 25.99 1.41 3.58 0.53 7.40 3.87 TPS>1% CD274 207.00 10.19 5.63 0.29 - 133.81 3.03 11.65 1.74 22.25 14.74 TPS<10% CD274 252.00 4.25 2.87 0.00 - 72.72 1.74 4.96 0.92 8.70 5.81 TPS>10% CD274 98.00 15.50 9.67 0.29 - 133.81 4.91 18.74 2.90 31.87 18.57 TPS<30% CD274 319.00 5.35 3.32 0.00 - 72.72 1.94 6.43 1.06 12.00 6.48 TPS>30% CD274 31.00 28.50 18.62 2.90 - 133.81 11.47 35.94 6.67 52.69 27.31 Citation Format: Ahmad Charifa, Alfonso Lam, Hong Zhang, Andrew Ip, Andrew Pecora, Stanley Waintraub, Deena Graham, Donna McNamara, Martin Gutierrez, Andrew Jennis, Ipsa Sharma, Jeffrey Estella, Wanlong Ma, Andre Goy, Maher Albitar. Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4337.]]></description><issn>1538-7445</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdj8tKBDEQRYMoOD4-Qagf6DGZdJjB3eADFwqzcB_KdLotSXeGVDXi3ztBEdeu6lLcA_codWX00hi3uTbObpp127rl9nmlV7ZprV0fqcXv__hPPlVnzO9aa2e0W6iP7StLwSBQoRvYldhREJoG2N01TwZYUGYGmoBzog5kHnNhmLlWDuTEodBe8kgBOhQEnDrAItRTIEwHUGJKNMQpRMA05ELyNvKFOukxcbz8uefKPdy_3D42oWTmEnu_LzRi-fRG-2rpq4GvBv7b0tfB9r_cF0FKXPI</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Charifa, Ahmad</creator><creator>Lam, Alfonso</creator><creator>Zhang, Hong</creator><creator>Ip, Andrew</creator><creator>Pecora, Andrew</creator><creator>Waintraub, Stanley</creator><creator>Graham, Deena</creator><creator>McNamara, Donna</creator><creator>Gutierrez, Martin</creator><creator>Jennis, Andrew</creator><creator>Sharma, Ipsa</creator><creator>Estella, Jeffrey</creator><creator>Ma, Wanlong</creator><creator>Goy, Andre</creator><creator>Albitar, Maher</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230404</creationdate><title>Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms</title><author>Charifa, Ahmad ; Lam, Alfonso ; Zhang, Hong ; Ip, Andrew ; Pecora, Andrew ; Waintraub, Stanley ; Graham, Deena ; McNamara, Donna ; Gutierrez, Martin ; Jennis, Andrew ; Sharma, Ipsa ; Estella, Jeffrey ; Ma, Wanlong ; Goy, Andre ; Albitar, Maher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1158_1538_7445_AM2023_43373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charifa, Ahmad</creatorcontrib><creatorcontrib>Lam, Alfonso</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Ip, Andrew</creatorcontrib><creatorcontrib>Pecora, Andrew</creatorcontrib><creatorcontrib>Waintraub, Stanley</creatorcontrib><creatorcontrib>Graham, Deena</creatorcontrib><creatorcontrib>McNamara, Donna</creatorcontrib><creatorcontrib>Gutierrez, Martin</creatorcontrib><creatorcontrib>Jennis, Andrew</creatorcontrib><creatorcontrib>Sharma, Ipsa</creatorcontrib><creatorcontrib>Estella, Jeffrey</creatorcontrib><creatorcontrib>Ma, Wanlong</creatorcontrib><creatorcontrib>Goy, Andre</creatorcontrib><creatorcontrib>Albitar, Maher</creatorcontrib><collection>CrossRef</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charifa, Ahmad</au><au>Lam, Alfonso</au><au>Zhang, Hong</au><au>Ip, Andrew</au><au>Pecora, Andrew</au><au>Waintraub, Stanley</au><au>Graham, Deena</au><au>McNamara, Donna</au><au>Gutierrez, Martin</au><au>Jennis, Andrew</au><au>Sharma, Ipsa</au><au>Estella, Jeffrey</au><au>Ma, Wanlong</au><au>Goy, Andre</au><au>Albitar, Maher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><date>2023-04-04</date><risdate>2023</risdate><volume>83</volume><issue>7_Supplement</issue><spage>4337</spage><epage>4337</epage><pages>4337-4337</pages><issn>1538-7445</issn><eissn>1538-7445</eissn><abstract><![CDATA[PD-L1 immunohistochemistry (IHC) is routinely used to predict the clinical response to immune checkpoint inhibitors (ICIs); however, multiple assays and antibodies have been used. This study aimed to evaluate the potential of targeted transcriptome and artificial intelligence (AI) to determine PD-L1 RNA expression levels and predict the ICI response compared to traditional IHC. RNA from 396 solid tumors samples was sequenced using next-generation sequencing (NGS) with a targeted 1408-gene panel. RNA expression and PD-L1 IHC were assessed across a broad range of PD-L1 expression levels. The geometric mean naïve Bayesian (GMNB) classifier was used to predict the PD-L1 status. PD-L1 RNA levels assessed by NGS demonstrated robust linearity across high and low expression ranges, and those assessed using NGS and IHC (Tumor cells (TC), Tumor Proportion Score (TPS) and tumor-infiltrating immune cells (ICs) were highly correlated (Tables 1). RNA sequencing provided in-depth information on the tumor microenvironment and immune response, including CD19, CD22, CD8A, CTLA4, and PD-L2 expression status. Sub-analyses showed a sustained correlation of mRNA expression with IHC (TPS and ICs) across different solid tumor types. Machine learning showed high accuracy in predicting PD-L1 status, with the area under the curve varying between 0.988 and 0.920. Targeted transcriptome sequencing combined with AI is highly useful for predicting PD-L1 status. Measuring PD-L1 mRNA expression by NGS is comparable to measuring PD-L1 expression by IHC for predicting ICI response. RNA expression has the added advantages of being amenable to standardization and avoidance of interpretation bias, along with an in-depth evaluation of the tumor microenvironment. Correlation between PD-L1 expression levels and PD-L1 IHC results IHC test results Variable Cases (N) Mean Median Range Lower Quartile Upper Quartile 10th Percentile 90th Percentile Std. Dev. TC<1% CD274 223.00 4.49 2.97 0.00 - 25.99 1.79 5.73 1.07 9.16 4.32 TC>1% CD274 90.00 14.87 10.11 0.62 - 77.53 4.60 18.62 2.95 32.35 15.75 TC<10% CD274 267.00 5.17 3.36 0.00 - 72.72 1.94 6.43 1.14 10.71 6.14 TC>10% CD274 46.00 20.81 14.03 2.90 - 77.53 8.67 26.32 4.21 51.02 17.33 IC<1% CD274 133.00 3.95 2.66 0.00 - 25.99 1.71 4.03 0.99 7.95 4.56 IC>1% CD274 129.00 9.38 5.43 0.29 - 77.53 3.21 10.31 1.74 19.05 12.13 IC<10% CD274 226.00 5.69 3.03 0.00 - 72.72 1.92 6.09 1.15 12.25 8.24 IC>10% CD274 36.00 12.50 8.52 0.29 - 77.53 4.72 13.80 4.18 31.83 13.95 TPS<1% CD274 143.00 3.36 2.35 0.00 - 25.99 1.41 3.58 0.53 7.40 3.87 TPS>1% CD274 207.00 10.19 5.63 0.29 - 133.81 3.03 11.65 1.74 22.25 14.74 TPS<10% CD274 252.00 4.25 2.87 0.00 - 72.72 1.74 4.96 0.92 8.70 5.81 TPS>10% CD274 98.00 15.50 9.67 0.29 - 133.81 4.91 18.74 2.90 31.87 18.57 TPS<30% CD274 319.00 5.35 3.32 0.00 - 72.72 1.94 6.43 1.06 12.00 6.48 TPS>30% CD274 31.00 28.50 18.62 2.90 - 133.81 11.47 35.94 6.67 52.69 27.31 Citation Format: Ahmad Charifa, Alfonso Lam, Hong Zhang, Andrew Ip, Andrew Pecora, Stanley Waintraub, Deena Graham, Donna McNamara, Martin Gutierrez, Andrew Jennis, Ipsa Sharma, Jeffrey Estella, Wanlong Ma, Andre Goy, Maher Albitar. Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4337.]]></abstract><doi>10.1158/1538-7445.AM2023-4337</doi></addata></record>
fulltext fulltext
identifier ISSN: 1538-7445
ispartof Cancer research (Chicago, Ill.), 2023-04, Vol.83 (7_Supplement), p.4337-4337
issn 1538-7445
1538-7445
language eng
recordid cdi_crossref_primary_10_1158_1538_7445_AM2023_4337
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Abstract 4337: Predicting PD-L1 status in solid tumors using transcriptomic data and artificial intelligence algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%204337:%20Predicting%20PD-L1%20status%20in%20solid%20tumors%20using%20transcriptomic%20data%20and%20artificial%20intelligence%20algorithms&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Charifa,%20Ahmad&rft.date=2023-04-04&rft.volume=83&rft.issue=7_Supplement&rft.spage=4337&rft.epage=4337&rft.pages=4337-4337&rft.issn=1538-7445&rft.eissn=1538-7445&rft_id=info:doi/10.1158/1538-7445.AM2023-4337&rft_dat=%3Ccrossref%3E10_1158_1538_7445_AM2023_4337%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1158_1538_7445_AM2023_43373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true