Loading…

Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation

Chronic angiotensin II (Ang II) infusion stimulates interleukin (IL) 6 release, and we and others have shown that preventing the increase in IL-6 significantly attenuates Ang II hypertension. This study measured renal blood flow (RBF) chronically, using Transonic flow probes in wild-type (WT) and IL...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2010-11, Vol.56 (5), p.879-884
Main Authors: Brands, Michael W, Banes-Berceli, Amy K.L, Inscho, Edward W, Al-Azawi, Hind, Allen, Ashlyn J, Labazi, Hicham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743
cites cdi_FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743
container_end_page 884
container_issue 5
container_start_page 879
container_title Hypertension (Dallas, Tex. 1979)
container_volume 56
creator Brands, Michael W
Banes-Berceli, Amy K.L
Inscho, Edward W
Al-Azawi, Hind
Allen, Ashlyn J
Labazi, Hicham
description Chronic angiotensin II (Ang II) infusion stimulates interleukin (IL) 6 release, and we and others have shown that preventing the increase in IL-6 significantly attenuates Ang II hypertension. This study measured renal blood flow (RBF) chronically, using Transonic flow probes in wild-type (WT) and IL-6 knockout (KO) mice, to determine the role of RBF regulation in that response. Ang II infusion at 200, 800, and 3600 ng/kg per minute caused a dose-dependent decrease in RBF in WT mice, and the response at 800 ng/kg per minute was compared between WT and IL-6 KO mice. Ang II infusion increased plasma IL-6 concentration in WT mice and increased mean arterial pressure (19 h/d with telemetry) from 113±4 to 149±4 mm Hg (Δ36 mm Hg) over the 7-day infusion period, and that effect was blocked in IL-6 KO mice (119±7 to 126±7 mm Hg). RBF decreased to an average of 61±8% of control over the 7-day period (control0.86±0.02 mL/min) in the WT mice; however, the average decrease to 72±6% of control (control0.88±0.02 mL/min) in the KO mice was not significantly different. There also was no difference in afferent arteriolar constriction by Ang II in blood-perfused juxtamedullary nephrons in WT versus KO mice. Phosphorylation of janus kinase 2 and signal transducer and activator of transcription 3 in renal cortex homogenates increased significantly in Ang II–infused WT mice, and that effect was prevented completely in Ang II–infused IL-6 KO mice. These data suggest that IL-6-dependent activation of the renal janus kinase 2/signal transducer and activator of transcription 3 pathway plays a role in Ang II hypertension but not by mediating the effect of Ang II to decrease total RBF.
doi_str_mv 10.1161/HYPERTENSIONAHA.110.158071
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1161_HYPERTENSIONAHA_110_158071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20921429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743</originalsourceid><addsrcrecordid>eNpdkd9O2zAUxq1paHSwV5gspF1m-MSOHXMXoW4NIEClm7aryHUcCA12ZScg3omHxE35I2HJss75ft-x7A-hAyA_ATgczv5fTueL6flVeXFezIrYjEKWEwGf0ASylCUs4_QzmhCQLJEA_3bR1xBuCQHGmPiCdlMiU2CpnKCn0vbGd2ZYtRZzfGqdXrmhx5fe3BvbB1zY69b1xoaolyWePa6NH0tnj_DcdQa7Bs-NVR3-q4LTzobet7qPOla2xifKDgGftlYFg9PDq_Z6gy68sqEetPEjVET-XvXOb4aNmvbtepxBX8VY7KOdRnXBfHs599CfX9PF8Sw5u_hdHhdniaaSQqJlxpVoBJUy07mg2ijdMAUNyFryeikIYZwKQaOU5cB4JkSzFJzRJaeZYHQPHW3nau9C8Kap1r69U_6xAlJtIqg-RBCbURgjiObvW_N6WN6Z-s36-ucR-PECqKBV18Tn6ja8c5TmQoKIHNtyD66LGYVVNzwYX90Y1fU3FYmLpTxPUgIkXk9IEncK9BlhlKMR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation</title><source>EZB Electronic Journals Library</source><creator>Brands, Michael W ; Banes-Berceli, Amy K.L ; Inscho, Edward W ; Al-Azawi, Hind ; Allen, Ashlyn J ; Labazi, Hicham</creator><creatorcontrib>Brands, Michael W ; Banes-Berceli, Amy K.L ; Inscho, Edward W ; Al-Azawi, Hind ; Allen, Ashlyn J ; Labazi, Hicham</creatorcontrib><description>Chronic angiotensin II (Ang II) infusion stimulates interleukin (IL) 6 release, and we and others have shown that preventing the increase in IL-6 significantly attenuates Ang II hypertension. This study measured renal blood flow (RBF) chronically, using Transonic flow probes in wild-type (WT) and IL-6 knockout (KO) mice, to determine the role of RBF regulation in that response. Ang II infusion at 200, 800, and 3600 ng/kg per minute caused a dose-dependent decrease in RBF in WT mice, and the response at 800 ng/kg per minute was compared between WT and IL-6 KO mice. Ang II infusion increased plasma IL-6 concentration in WT mice and increased mean arterial pressure (19 h/d with telemetry) from 113±4 to 149±4 mm Hg (Δ36 mm Hg) over the 7-day infusion period, and that effect was blocked in IL-6 KO mice (119±7 to 126±7 mm Hg). RBF decreased to an average of 61±8% of control over the 7-day period (control0.86±0.02 mL/min) in the WT mice; however, the average decrease to 72±6% of control (control0.88±0.02 mL/min) in the KO mice was not significantly different. There also was no difference in afferent arteriolar constriction by Ang II in blood-perfused juxtamedullary nephrons in WT versus KO mice. Phosphorylation of janus kinase 2 and signal transducer and activator of transcription 3 in renal cortex homogenates increased significantly in Ang II–infused WT mice, and that effect was prevented completely in Ang II–infused IL-6 KO mice. These data suggest that IL-6-dependent activation of the renal janus kinase 2/signal transducer and activator of transcription 3 pathway plays a role in Ang II hypertension but not by mediating the effect of Ang II to decrease total RBF.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/HYPERTENSIONAHA.110.158071</identifier><identifier>PMID: 20921429</identifier><identifier>CODEN: HPRTDN</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Analysis of Variance ; Angiotensin II - pharmacology ; Animals ; Arterial hypertension. Arterial hypotension ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood Pressure - drug effects ; Blood Pressure - genetics ; Blotting, Western ; Cardiology. Vascular system ; Clinical manifestations. Epidemiology. Investigative techniques. Etiology ; Dose-Response Relationship, Drug ; Hypertension - chemically induced ; Hypertension - genetics ; Hypertension - metabolism ; Immunoenzyme Techniques ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Janus Kinase 2 - genetics ; Janus Kinase 2 - metabolism ; Kidney - blood supply ; Kidney - metabolism ; Medical sciences ; Mice ; Mice, Knockout ; Phosphorylation - physiology ; Random Allocation ; Renal Circulation - drug effects ; Signal Transduction - drug effects ; Signal Transduction - genetics ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Vasoconstriction - drug effects ; Vasoconstriction - physiology</subject><ispartof>Hypertension (Dallas, Tex. 1979), 2010-11, Vol.56 (5), p.879-884</ispartof><rights>2010 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743</citedby><cites>FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23387917$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20921429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brands, Michael W</creatorcontrib><creatorcontrib>Banes-Berceli, Amy K.L</creatorcontrib><creatorcontrib>Inscho, Edward W</creatorcontrib><creatorcontrib>Al-Azawi, Hind</creatorcontrib><creatorcontrib>Allen, Ashlyn J</creatorcontrib><creatorcontrib>Labazi, Hicham</creatorcontrib><title>Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>Chronic angiotensin II (Ang II) infusion stimulates interleukin (IL) 6 release, and we and others have shown that preventing the increase in IL-6 significantly attenuates Ang II hypertension. This study measured renal blood flow (RBF) chronically, using Transonic flow probes in wild-type (WT) and IL-6 knockout (KO) mice, to determine the role of RBF regulation in that response. Ang II infusion at 200, 800, and 3600 ng/kg per minute caused a dose-dependent decrease in RBF in WT mice, and the response at 800 ng/kg per minute was compared between WT and IL-6 KO mice. Ang II infusion increased plasma IL-6 concentration in WT mice and increased mean arterial pressure (19 h/d with telemetry) from 113±4 to 149±4 mm Hg (Δ36 mm Hg) over the 7-day infusion period, and that effect was blocked in IL-6 KO mice (119±7 to 126±7 mm Hg). RBF decreased to an average of 61±8% of control over the 7-day period (control0.86±0.02 mL/min) in the WT mice; however, the average decrease to 72±6% of control (control0.88±0.02 mL/min) in the KO mice was not significantly different. There also was no difference in afferent arteriolar constriction by Ang II in blood-perfused juxtamedullary nephrons in WT versus KO mice. Phosphorylation of janus kinase 2 and signal transducer and activator of transcription 3 in renal cortex homogenates increased significantly in Ang II–infused WT mice, and that effect was prevented completely in Ang II–infused IL-6 KO mice. These data suggest that IL-6-dependent activation of the renal janus kinase 2/signal transducer and activator of transcription 3 pathway plays a role in Ang II hypertension but not by mediating the effect of Ang II to decrease total RBF.</description><subject>Analysis of Variance</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Arterial hypertension. Arterial hypotension</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood Pressure - drug effects</subject><subject>Blood Pressure - genetics</subject><subject>Blotting, Western</subject><subject>Cardiology. Vascular system</subject><subject>Clinical manifestations. Epidemiology. Investigative techniques. Etiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Hypertension - chemically induced</subject><subject>Hypertension - genetics</subject><subject>Hypertension - metabolism</subject><subject>Immunoenzyme Techniques</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Janus Kinase 2 - genetics</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Kidney - blood supply</subject><subject>Kidney - metabolism</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Phosphorylation - physiology</subject><subject>Random Allocation</subject><subject>Renal Circulation - drug effects</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Vasoconstriction - drug effects</subject><subject>Vasoconstriction - physiology</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkd9O2zAUxq1paHSwV5gspF1m-MSOHXMXoW4NIEClm7aryHUcCA12ZScg3omHxE35I2HJss75ft-x7A-hAyA_ATgczv5fTueL6flVeXFezIrYjEKWEwGf0ASylCUs4_QzmhCQLJEA_3bR1xBuCQHGmPiCdlMiU2CpnKCn0vbGd2ZYtRZzfGqdXrmhx5fe3BvbB1zY69b1xoaolyWePa6NH0tnj_DcdQa7Bs-NVR3-q4LTzobet7qPOla2xifKDgGftlYFg9PDq_Z6gy68sqEetPEjVET-XvXOb4aNmvbtepxBX8VY7KOdRnXBfHs599CfX9PF8Sw5u_hdHhdniaaSQqJlxpVoBJUy07mg2ijdMAUNyFryeikIYZwKQaOU5cB4JkSzFJzRJaeZYHQPHW3nau9C8Kap1r69U_6xAlJtIqg-RBCbURgjiObvW_N6WN6Z-s36-ucR-PECqKBV18Tn6ja8c5TmQoKIHNtyD66LGYVVNzwYX90Y1fU3FYmLpTxPUgIkXk9IEncK9BlhlKMR</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Brands, Michael W</creator><creator>Banes-Berceli, Amy K.L</creator><creator>Inscho, Edward W</creator><creator>Al-Azawi, Hind</creator><creator>Allen, Ashlyn J</creator><creator>Labazi, Hicham</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201011</creationdate><title>Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation</title><author>Brands, Michael W ; Banes-Berceli, Amy K.L ; Inscho, Edward W ; Al-Azawi, Hind ; Allen, Ashlyn J ; Labazi, Hicham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of Variance</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Arterial hypertension. Arterial hypotension</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood Pressure - drug effects</topic><topic>Blood Pressure - genetics</topic><topic>Blotting, Western</topic><topic>Cardiology. Vascular system</topic><topic>Clinical manifestations. Epidemiology. Investigative techniques. Etiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Hypertension - chemically induced</topic><topic>Hypertension - genetics</topic><topic>Hypertension - metabolism</topic><topic>Immunoenzyme Techniques</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Janus Kinase 2 - genetics</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Kidney - blood supply</topic><topic>Kidney - metabolism</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Phosphorylation - physiology</topic><topic>Random Allocation</topic><topic>Renal Circulation - drug effects</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Vasoconstriction - drug effects</topic><topic>Vasoconstriction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brands, Michael W</creatorcontrib><creatorcontrib>Banes-Berceli, Amy K.L</creatorcontrib><creatorcontrib>Inscho, Edward W</creatorcontrib><creatorcontrib>Al-Azawi, Hind</creatorcontrib><creatorcontrib>Allen, Ashlyn J</creatorcontrib><creatorcontrib>Labazi, Hicham</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brands, Michael W</au><au>Banes-Berceli, Amy K.L</au><au>Inscho, Edward W</au><au>Al-Azawi, Hind</au><au>Allen, Ashlyn J</au><au>Labazi, Hicham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>2010-11</date><risdate>2010</risdate><volume>56</volume><issue>5</issue><spage>879</spage><epage>884</epage><pages>879-884</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><coden>HPRTDN</coden><abstract>Chronic angiotensin II (Ang II) infusion stimulates interleukin (IL) 6 release, and we and others have shown that preventing the increase in IL-6 significantly attenuates Ang II hypertension. This study measured renal blood flow (RBF) chronically, using Transonic flow probes in wild-type (WT) and IL-6 knockout (KO) mice, to determine the role of RBF regulation in that response. Ang II infusion at 200, 800, and 3600 ng/kg per minute caused a dose-dependent decrease in RBF in WT mice, and the response at 800 ng/kg per minute was compared between WT and IL-6 KO mice. Ang II infusion increased plasma IL-6 concentration in WT mice and increased mean arterial pressure (19 h/d with telemetry) from 113±4 to 149±4 mm Hg (Δ36 mm Hg) over the 7-day infusion period, and that effect was blocked in IL-6 KO mice (119±7 to 126±7 mm Hg). RBF decreased to an average of 61±8% of control over the 7-day period (control0.86±0.02 mL/min) in the WT mice; however, the average decrease to 72±6% of control (control0.88±0.02 mL/min) in the KO mice was not significantly different. There also was no difference in afferent arteriolar constriction by Ang II in blood-perfused juxtamedullary nephrons in WT versus KO mice. Phosphorylation of janus kinase 2 and signal transducer and activator of transcription 3 in renal cortex homogenates increased significantly in Ang II–infused WT mice, and that effect was prevented completely in Ang II–infused IL-6 KO mice. These data suggest that IL-6-dependent activation of the renal janus kinase 2/signal transducer and activator of transcription 3 pathway plays a role in Ang II hypertension but not by mediating the effect of Ang II to decrease total RBF.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>20921429</pmid><doi>10.1161/HYPERTENSIONAHA.110.158071</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0194-911X
ispartof Hypertension (Dallas, Tex. 1979), 2010-11, Vol.56 (5), p.879-884
issn 0194-911X
1524-4563
language eng
recordid cdi_crossref_primary_10_1161_HYPERTENSIONAHA_110_158071
source EZB Electronic Journals Library
subjects Analysis of Variance
Angiotensin II - pharmacology
Animals
Arterial hypertension. Arterial hypotension
Biological and medical sciences
Blood and lymphatic vessels
Blood Pressure - drug effects
Blood Pressure - genetics
Blotting, Western
Cardiology. Vascular system
Clinical manifestations. Epidemiology. Investigative techniques. Etiology
Dose-Response Relationship, Drug
Hypertension - chemically induced
Hypertension - genetics
Hypertension - metabolism
Immunoenzyme Techniques
Interleukin-6 - genetics
Interleukin-6 - metabolism
Janus Kinase 2 - genetics
Janus Kinase 2 - metabolism
Kidney - blood supply
Kidney - metabolism
Medical sciences
Mice
Mice, Knockout
Phosphorylation - physiology
Random Allocation
Renal Circulation - drug effects
Signal Transduction - drug effects
Signal Transduction - genetics
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Vasoconstriction - drug effects
Vasoconstriction - physiology
title Interleukin 6 Knockout Prevents Angiotensin II Hypertension: Role of Renal Vasoconstriction and Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleukin%206%20Knockout%20Prevents%20Angiotensin%20II%20Hypertension:%20Role%20of%20Renal%20Vasoconstriction%20and%20Janus%20Kinase%202/Signal%20Transducer%20and%20Activator%20of%20Transcription%203%20Activation&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Brands,%20Michael%20W&rft.date=2010-11&rft.volume=56&rft.issue=5&rft.spage=879&rft.epage=884&rft.pages=879-884&rft.issn=0194-911X&rft.eissn=1524-4563&rft.coden=HPRTDN&rft_id=info:doi/10.1161/HYPERTENSIONAHA.110.158071&rft_dat=%3Cpubmed_cross%3E20921429%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3931-c956a7f73995c873ceacf4a1f19d96db70046377373c58146577fb7643b635743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20921429&rfr_iscdi=true