Loading…

G-Protein–Coupled Receptor MrgD Is a Receptor for Angiotensin-(1–7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A

Angiotensin (Ang)-(1–7) has cardiovascular protective effects and is the opponent of the often detrimental Ang II within the renin–angiotensin system. Although it is well accepted that the G-protein–coupled receptor Mas is a receptor for the heptapeptide, the lack in knowing initial signaling molecu...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2016-07, Vol.68 (1), p.185-194
Main Authors: Tetzner, Anja, Gebolys, Kinga, Meinert, Christian, Klein, Sabine, Uhlich, Anja, Trebicka, Jonel, Villacañas, Óscar, Walther, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Angiotensin (Ang)-(1–7) has cardiovascular protective effects and is the opponent of the often detrimental Ang II within the renin–angiotensin system. Although it is well accepted that the G-protein–coupled receptor Mas is a receptor for the heptapeptide, the lack in knowing initial signaling molecules stimulated by Ang-(1–7) prevented definitive characterization of ligand/receptor pharmacology as well as identification of further hypothesized receptors for the heptapeptide. The study aimed to identify a second messenger stimulated by Ang-(1–7) allowing confirmation as well as discovery of the heptapeptide’s receptors. Ang-(1–7) elevates cAMP concentration in primary cells, such as endothelial or mesangial cells. Using cAMP as readout in receptor-transfected human embryonic kidney (HEK293) cells, we provided pharmacological proof that Mas is a functional receptor for Ang-(1–7). Moreover, we identified the G-protein–coupled receptor MrgD as a second receptor for Ang-(1–7). Consequently, the heptapeptide failed to increase cAMP concentration in primary mesangial cells with genetic deficiency in both Mas and MrgD. Mice deficient in MrgD showed an impaired hemodynamic response after Ang-(1–7) administration. Furthermore, we excluded the Ang II type 2 receptor as a receptor for the heptapeptide but discovered that the Ang II type 2 blocker PD123319 can also block Mas and MrgD receptors. Our results lead to an expansion and partial revision of the renin–angiotensin system, by identifying a second receptor for Ang-(1–7), by excluding Ang II type 2 as a receptor for the heptapeptide, and by enforcing the revisit of such publications which concluded Ang II type 2 function by only using PD123319.
ISSN:0194-911X
1524-4563
DOI:10.1161/HYPERTENSIONAHA.116.07572