Loading…
Abstract 182: Class I Histone Deacetylase Inhibition Represses the Upregulation of Sodium-Calcium Exchanger Expression in Cardiac Hypertrophy
Abstract only Background: Histone deacetylases (HDACs) play an important role in the alteration of gene expression during cardiac hypertrophy and failure. Our previous study demonstrated that acetylated Nkx2.5 is associated with the Class I/II HDAC complex, HDAC5/1/2 at the Ncx1 promoter, and deacet...
Saved in:
Published in: | Circulation research 2012-08, Vol.111 (suppl_1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract only
Background:
Histone deacetylases (HDACs) play an important role in the alteration of gene expression during cardiac hypertrophy and failure. Our previous study demonstrated that acetylated Nkx2.5 is associated with the Class I/II HDAC complex, HDAC5/1/2 at the Ncx1 promoter, and deacetylated Nkx2.5 is associated with the transcriptional activator and histone acetylase, p300 in a mutually exclusive manner. Inhibition of HDACs by the Class I/II inhibitor, trichostatin A (TSA) prevents deacetylation of Nkx2.5 and recruitment of p300 to the Ncx1 promoter, thereby repressing its upregulation.
Objective:
To assess the specific roles of HDAC1, 2 and 5 in the regulation of Ncx1 gene expression and determine the specific Nkx2.5 lysine(s) undergoing acetylation or deacetylation, which mediates Ncx1 upregulation.
Results:
Treatment of isolated adult cardiomyocytes with the selective class I HDAC inhibitor, BML210, prevented alpha- and beta-adrenergic stimulated upregulation of Ncx1 expression, whereas treatment with the specific class II HDAC inhibitor, dPAHA did not. Interestingly, the HDAC5 knockout prevented NCX1 upregulation after 72 hr trans-aortic constriction (TAC) in mice. In order to determine which Nkx2.5 lysine(s) is deacetylated by HDAC1/2, we performed mass spectrometry analysis. The Nkx2.5 gene contains 15 lysine moieties, and LC-MS/MS analysis demonstrates that Nkx2.5 is acetylated on two conserved lysine residues.
Conclusion:
Class I HDAC activity is required for Ncx1 expression but not class II HDAC activity (HDAC5). However, the loss of HDAC5 prevents Ncx1 upregulation because it may act as a scaffold to recruit the factors required for Ncx1 promoter activation. These results suggest that HDAC inhibition may represent a novel therapeutic modality for hypertrophy and heart failure. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/res.111.suppl_1.A182 |