Loading…
From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning
This fMRI study aimed at unraveling the neural basis of learning alphabet arithmetic facts, as a proxy of the transition from slow and effortful procedural counting-based processing to fast and effortless processing as it occurs in learning addition arithmetic facts. Neural changes were tracked whil...
Saved in:
Published in: | Journal of cognitive neuroscience 2021-12, Vol.34 (1), p.16-33 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This fMRI study aimed at unraveling the neural basis of learning alphabet arithmetic facts, as a proxy of the transition from slow and effortful procedural counting-based processing to fast and effortless processing as it occurs in learning addition arithmetic facts. Neural changes were tracked while participants solved alphabet arithmetic problems in a verification task (e.g., F + 4 = J). Problems were repeated across four learning blocks. Two neural networks with opposed learning-related changes were identified. Activity in a network consisting of basal ganglia and parieto-frontal areas decreased with learning, which is in line with a reduction of the involvement of procedure-based processing. Conversely, activity in a network involving the left angular gyrus and, to a lesser extent, the hippocampus gradually increases with learning, evidencing the gradual involvement of retrieval-based processing. Connectivity analyses gave insight in the functional relationship
between the two networks. Despite the opposing learning-related trajectories, it was found that both networks become more integrated. Taking alphabet arithmetic as a proxy for learning arithmetic, the present results have implications for current theories of learning arithmetic facts and can give direction to future developments. |
---|---|
ISSN: | 0898-929X 1530-8898 |
DOI: | 10.1162/jocn_a_01789 |