Loading…
Constructing Braided Hopf Algebras in Monoidal Hom-category
In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in bo...
Saved in:
Published in: | Taiwanese journal of mathematics 2016-12, Vol.20 (6), p.1203-1230 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3 |
container_end_page | 1230 |
container_issue | 6 |
container_start_page | 1203 |
container_title | Taiwanese journal of mathematics |
container_volume | 20 |
creator | You, Miman Wang, Shuanhong |
description | In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras
B
̄
andḆin Yetter-Drinfeld category
H
~
(
H
Y
D
1
H
)
and
H
~
(
H
Y
D
2
H
)
respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article. |
doi_str_mv | 10.11650/tjm.20.2016.6013 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_20_2016_6013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>taiwjmath.20.6.1203</jstor_id><sourcerecordid>taiwjmath.20.6.1203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoWKs_wN0s3UzNe5lJUlzVYq1QcaPrkK-pM3QmJYlI_71TK8KDu3j3XDiE3AKdAfCa3ueunyEdD_iMU2BnZIKIVcllDedkAhRFWVdSXJKrlDpKUXLgE_KwDEPK8cvmdtgWj1G3zrtiHfZNsdhtvYk6Fe1QvIYhtE7vxk9fWp39NsTDNblo9C75m7-cko_V0_tyXW7enl-Wi01pQUpWOjtHWXFv0XMhOXW1cGYuuXWN1cwJ5pmrUCCzYwJWhklujPG1pbUw2rMpgdOujSGl6Bu1j22v40EBVb_2arRXSNXRXh3tR-buxHQph_gPZN1-d73On8c2V4CUsR8rtFwZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><source>Project Euclid Open Access</source><source>JSTOR</source><creator>You, Miman ; Wang, Shuanhong</creator><creatorcontrib>You, Miman ; Wang, Shuanhong</creatorcontrib><description>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras
B
̄
andḆin Yetter-Drinfeld category
H
~
(
H
Y
D
1
H
)
and
H
~
(
H
Y
D
2
H
)
respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm.20.2016.6013</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><subject>Algebra ; Axioms ; Braiding ; Linear transformations ; Mathematical objects ; Morphisms ; Tensors</subject><ispartof>Taiwanese journal of mathematics, 2016-12, Vol.20 (6), p.1203-1230</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/taiwjmath.20.6.1203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/taiwjmath.20.6.1203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><title>Taiwanese journal of mathematics</title><description>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras
B
̄
andḆin Yetter-Drinfeld category
H
~
(
H
Y
D
1
H
)
and
H
~
(
H
Y
D
2
H
)
respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</description><subject>Algebra</subject><subject>Axioms</subject><subject>Braiding</subject><subject>Linear transformations</subject><subject>Mathematical objects</subject><subject>Morphisms</subject><subject>Tensors</subject><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoWKs_wN0s3UzNe5lJUlzVYq1QcaPrkK-pM3QmJYlI_71TK8KDu3j3XDiE3AKdAfCa3ueunyEdD_iMU2BnZIKIVcllDedkAhRFWVdSXJKrlDpKUXLgE_KwDEPK8cvmdtgWj1G3zrtiHfZNsdhtvYk6Fe1QvIYhtE7vxk9fWp39NsTDNblo9C75m7-cko_V0_tyXW7enl-Wi01pQUpWOjtHWXFv0XMhOXW1cGYuuXWN1cwJ5pmrUCCzYwJWhklujPG1pbUw2rMpgdOujSGl6Bu1j22v40EBVb_2arRXSNXRXh3tR-buxHQph_gPZN1-d73On8c2V4CUsR8rtFwZ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>You, Miman</creator><creator>Wang, Shuanhong</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><author>You, Miman ; Wang, Shuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Axioms</topic><topic>Braiding</topic><topic>Linear transformations</topic><topic>Mathematical objects</topic><topic>Morphisms</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Miman</au><au>Wang, Shuanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Braided Hopf Algebras in Monoidal Hom-category</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>1203</spage><epage>1230</epage><pages>1203-1230</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras
B
̄
andḆin Yetter-Drinfeld category
H
~
(
H
Y
D
1
H
)
and
H
~
(
H
Y
D
2
H
)
respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm.20.2016.6013</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-5487 |
ispartof | Taiwanese journal of mathematics, 2016-12, Vol.20 (6), p.1203-1230 |
issn | 1027-5487 2224-6851 |
language | eng |
recordid | cdi_crossref_primary_10_11650_tjm_20_2016_6013 |
source | Project Euclid Open Access; JSTOR |
subjects | Algebra Axioms Braiding Linear transformations Mathematical objects Morphisms Tensors |
title | Constructing Braided Hopf Algebras in Monoidal Hom-category |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Braided%20Hopf%20Algebras%20in%20Monoidal%20Hom-category&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=You,%20Miman&rft.date=2016-12-01&rft.volume=20&rft.issue=6&rft.spage=1203&rft.epage=1230&rft.pages=1203-1230&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm.20.2016.6013&rft_dat=%3Cjstor_cross%3Etaiwjmath.20.6.1203%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=taiwjmath.20.6.1203&rfr_iscdi=true |