Loading…

Constructing Braided Hopf Algebras in Monoidal Hom-category

In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in bo...

Full description

Saved in:
Bibliographic Details
Published in:Taiwanese journal of mathematics 2016-12, Vol.20 (6), p.1203-1230
Main Authors: You, Miman, Wang, Shuanhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3
container_end_page 1230
container_issue 6
container_start_page 1203
container_title Taiwanese journal of mathematics
container_volume 20
creator You, Miman
Wang, Shuanhong
description In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.
doi_str_mv 10.11650/tjm.20.2016.6013
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_20_2016_6013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>taiwjmath.20.6.1203</jstor_id><sourcerecordid>taiwjmath.20.6.1203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoWKs_wN0s3UzNe5lJUlzVYq1QcaPrkK-pM3QmJYlI_71TK8KDu3j3XDiE3AKdAfCa3ueunyEdD_iMU2BnZIKIVcllDedkAhRFWVdSXJKrlDpKUXLgE_KwDEPK8cvmdtgWj1G3zrtiHfZNsdhtvYk6Fe1QvIYhtE7vxk9fWp39NsTDNblo9C75m7-cko_V0_tyXW7enl-Wi01pQUpWOjtHWXFv0XMhOXW1cGYuuXWN1cwJ5pmrUCCzYwJWhklujPG1pbUw2rMpgdOujSGl6Bu1j22v40EBVb_2arRXSNXRXh3tR-buxHQph_gPZN1-d73On8c2V4CUsR8rtFwZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><source>Project Euclid Open Access</source><source>JSTOR</source><creator>You, Miman ; Wang, Shuanhong</creator><creatorcontrib>You, Miman ; Wang, Shuanhong</creatorcontrib><description>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm.20.2016.6013</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><subject>Algebra ; Axioms ; Braiding ; Linear transformations ; Mathematical objects ; Morphisms ; Tensors</subject><ispartof>Taiwanese journal of mathematics, 2016-12, Vol.20 (6), p.1203-1230</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/taiwjmath.20.6.1203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/taiwjmath.20.6.1203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><title>Taiwanese journal of mathematics</title><description>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</description><subject>Algebra</subject><subject>Axioms</subject><subject>Braiding</subject><subject>Linear transformations</subject><subject>Mathematical objects</subject><subject>Morphisms</subject><subject>Tensors</subject><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoWKs_wN0s3UzNe5lJUlzVYq1QcaPrkK-pM3QmJYlI_71TK8KDu3j3XDiE3AKdAfCa3ueunyEdD_iMU2BnZIKIVcllDedkAhRFWVdSXJKrlDpKUXLgE_KwDEPK8cvmdtgWj1G3zrtiHfZNsdhtvYk6Fe1QvIYhtE7vxk9fWp39NsTDNblo9C75m7-cko_V0_tyXW7enl-Wi01pQUpWOjtHWXFv0XMhOXW1cGYuuXWN1cwJ5pmrUCCzYwJWhklujPG1pbUw2rMpgdOujSGl6Bu1j22v40EBVb_2arRXSNXRXh3tR-buxHQph_gPZN1-d73On8c2V4CUsR8rtFwZ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>You, Miman</creator><creator>Wang, Shuanhong</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Constructing Braided Hopf Algebras in Monoidal Hom-category</title><author>You, Miman ; Wang, Shuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Axioms</topic><topic>Braiding</topic><topic>Linear transformations</topic><topic>Mathematical objects</topic><topic>Morphisms</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Miman</au><au>Wang, Shuanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Braided Hopf Algebras in Monoidal Hom-category</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>1203</spage><epage>1230</epage><pages>1203-1230</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>In this paper, we first define the coquasitriangular monoidal Hom-Hopf algebras. Secondly, we present a method to construct braided monoidal Hom-Hopf algebras B ̄ andḆin Yetter-Drinfeld category H ~ ( H Y D 1 H ) and H ~ ( H Y D 2 H ) respectively. As applications, we study some special cases in both module and comodule form for (H, ξH) being quasitriangular and for (H, ξH) being coquasitriangular respectively. Finally, we give some applications and examples of braided monoidal Hom-Hopf algebras in this article.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm.20.2016.6013</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1027-5487
ispartof Taiwanese journal of mathematics, 2016-12, Vol.20 (6), p.1203-1230
issn 1027-5487
2224-6851
language eng
recordid cdi_crossref_primary_10_11650_tjm_20_2016_6013
source Project Euclid Open Access; JSTOR
subjects Algebra
Axioms
Braiding
Linear transformations
Mathematical objects
Morphisms
Tensors
title Constructing Braided Hopf Algebras in Monoidal Hom-category
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Braided%20Hopf%20Algebras%20in%20Monoidal%20Hom-category&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=You,%20Miman&rft.date=2016-12-01&rft.volume=20&rft.issue=6&rft.spage=1203&rft.epage=1230&rft.pages=1203-1230&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm.20.2016.6013&rft_dat=%3Cjstor_cross%3Etaiwjmath.20.6.1203%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1883-dc92846ec2e67860d57db986cdfca3d73e3d42723c3d4124b386bbbe5c057bae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=taiwjmath.20.6.1203&rfr_iscdi=true