Loading…
COMPACTIFICATIONS OF METRIC SPACES
If X is a discrete topological space, the points of its Stone-Čech compactification βX can be regarded as ultrafilters on X, and this fact is a useful tool in analysing the properties of βX. The purpose of this paper is to describe the compactification X˜ of a metric space in terms of the concept of...
Saved in:
Published in: | Taiwanese journal of mathematics 2007-03, Vol.11 (1), p.15-26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 26 |
container_issue | 1 |
container_start_page | 15 |
container_title | Taiwanese journal of mathematics |
container_volume | 11 |
creator | Koçak, M. Akça, İ. |
description | If X is a discrete topological space, the points of its Stone-Čech compactification βX can be regarded as ultrafilters on X, and this fact is a useful tool in analysing the properties of βX. The purpose of this paper is to describe the compactification X˜ of a metric space in terms of the concept of near ultrafilters. We describe the topological space X˜ and we investigate conditions under which S̃ will be a semigroup compactification if S is a semigroup which has a metric. These conditions will always hold if the topology of S is defined by an invariant metric, and in this case our compactification S̃ coincides with SLUC |
doi_str_mv | 10.11650/twjm/1500404630 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_twjm_1500404630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43833771</jstor_id><sourcerecordid>43833771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-93cbe636b7765410dbacab9e8fc3531de643dbd0cef6eb4c9a68c71cad2783e53</originalsourceid><addsrcrecordid>eNpFj01LxDAURYMoWEf3boTivs57-XhJl0NptTBjxdZ1SdMULA4jTUH891ZHdHUX954Lh7FrhDtEUrCeP8b9GhWABEkCTljEOZcJGYWnLELgOlHS6HN2EcIIwA0hRew2q3ZPm6wpizLbNGX1WMdVEe_y5rnM4npp8vqSnQ32Lfir31yxlyJvsodkW90v0DZxnGBOUuE6T4I6rUlJhL6zznapN4MTSmDvSYq-68H5gXwnXWrJOI3O9lwb4ZVYMTj-uukQwuSH9n163dvps0Vofxzbb8f233FBbo7IGObD9LeXwgihNYovFutLhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COMPACTIFICATIONS OF METRIC SPACES</title><source>Project Euclid Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Koçak, M. ; Akça, İ.</creator><creatorcontrib>Koçak, M. ; Akça, İ.</creatorcontrib><description>If X is a discrete topological space, the points of its Stone-Čech compactification βX can be regarded as ultrafilters on X, and this fact is a useful tool in analysing the properties of βX. The purpose of this paper is to describe the compactification X˜ of a metric space in terms of the concept of near ultrafilters. We describe the topological space X˜ and we investigate conditions under which S̃ will be a semigroup compactification if S is a semigroup which has a metric. These conditions will always hold if the topology of S is defined by an invariant metric, and in this case our compactification S̃ coincides with SLUC</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/twjm/1500404630</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China (Taiwan)</publisher><subject>Compactification ; Continuous functions ; Mathematical theorems ; Metric spaces ; Semigroups ; Topological compactness ; Topological spaces ; Topological theorems ; Topology</subject><ispartof>Taiwanese journal of mathematics, 2007-03, Vol.11 (1), p.15-26</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43833771$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43833771$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Koçak, M.</creatorcontrib><creatorcontrib>Akça, İ.</creatorcontrib><title>COMPACTIFICATIONS OF METRIC SPACES</title><title>Taiwanese journal of mathematics</title><description>If X is a discrete topological space, the points of its Stone-Čech compactification βX can be regarded as ultrafilters on X, and this fact is a useful tool in analysing the properties of βX. The purpose of this paper is to describe the compactification X˜ of a metric space in terms of the concept of near ultrafilters. We describe the topological space X˜ and we investigate conditions under which S̃ will be a semigroup compactification if S is a semigroup which has a metric. These conditions will always hold if the topology of S is defined by an invariant metric, and in this case our compactification S̃ coincides with SLUC</description><subject>Compactification</subject><subject>Continuous functions</subject><subject>Mathematical theorems</subject><subject>Metric spaces</subject><subject>Semigroups</subject><subject>Topological compactness</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFj01LxDAURYMoWEf3boTivs57-XhJl0NptTBjxdZ1SdMULA4jTUH891ZHdHUX954Lh7FrhDtEUrCeP8b9GhWABEkCTljEOZcJGYWnLELgOlHS6HN2EcIIwA0hRew2q3ZPm6wpizLbNGX1WMdVEe_y5rnM4npp8vqSnQ32Lfir31yxlyJvsodkW90v0DZxnGBOUuE6T4I6rUlJhL6zznapN4MTSmDvSYq-68H5gXwnXWrJOI3O9lwb4ZVYMTj-uukQwuSH9n163dvps0Vofxzbb8f233FBbo7IGObD9LeXwgihNYovFutLhQ</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Koçak, M.</creator><creator>Akça, İ.</creator><general>Mathematical Society of the Republic of China (Taiwan)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070301</creationdate><title>COMPACTIFICATIONS OF METRIC SPACES</title><author>Koçak, M. ; Akça, İ.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-93cbe636b7765410dbacab9e8fc3531de643dbd0cef6eb4c9a68c71cad2783e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Compactification</topic><topic>Continuous functions</topic><topic>Mathematical theorems</topic><topic>Metric spaces</topic><topic>Semigroups</topic><topic>Topological compactness</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koçak, M.</creatorcontrib><creatorcontrib>Akça, İ.</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koçak, M.</au><au>Akça, İ.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPACTIFICATIONS OF METRIC SPACES</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>11</volume><issue>1</issue><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>If X is a discrete topological space, the points of its Stone-Čech compactification βX can be regarded as ultrafilters on X, and this fact is a useful tool in analysing the properties of βX. The purpose of this paper is to describe the compactification X˜ of a metric space in terms of the concept of near ultrafilters. We describe the topological space X˜ and we investigate conditions under which S̃ will be a semigroup compactification if S is a semigroup which has a metric. These conditions will always hold if the topology of S is defined by an invariant metric, and in this case our compactification S̃ coincides with SLUC</abstract><pub>Mathematical Society of the Republic of China (Taiwan)</pub><doi>10.11650/twjm/1500404630</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-5487 |
ispartof | Taiwanese journal of mathematics, 2007-03, Vol.11 (1), p.15-26 |
issn | 1027-5487 2224-6851 |
language | eng |
recordid | cdi_crossref_primary_10_11650_twjm_1500404630 |
source | Project Euclid Open Access; JSTOR Archival Journals and Primary Sources Collection |
subjects | Compactification Continuous functions Mathematical theorems Metric spaces Semigroups Topological compactness Topological spaces Topological theorems Topology |
title | COMPACTIFICATIONS OF METRIC SPACES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPACTIFICATIONS%20OF%20METRIC%20SPACES&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Ko%C3%A7ak,%20M.&rft.date=2007-03-01&rft.volume=11&rft.issue=1&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/twjm/1500404630&rft_dat=%3Cjstor_cross%3E43833771%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-93cbe636b7765410dbacab9e8fc3531de643dbd0cef6eb4c9a68c71cad2783e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43833771&rfr_iscdi=true |