Loading…

Automated Large-Scale Tornado Treefall Detection and Directional Analysis Using Machine Learning

In many regions of the world, tornadoes travel through forested areas with low population densities, making downed trees the only observable damage indicator. Current methods in the EF scale for analyzing tree damage may not reflect the true intensity of some tornadoes. However, new methods have bee...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence for the earth systems 2024-01, Vol.3 (1)
Main Authors: Butt, Daniel G., Jaffe, Aaron L., Miller, Connell S., Kopp, Gregory A., Sills, David M. L.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In many regions of the world, tornadoes travel through forested areas with low population densities, making downed trees the only observable damage indicator. Current methods in the EF scale for analyzing tree damage may not reflect the true intensity of some tornadoes. However, new methods have been developed that use the number of trees downed or treefall directions from high-resolution aerial imagery to provide an estimate of maximum wind speed. Treefall Identification and Direction Analysis (TrIDA) maps are used to identify areas of treefall damage and treefall directions along the damage path. Currently, TrIDA maps are generated manually, but this is labor-intensive, often taking several days or weeks. To solve this, this paper describes a machine learning– and image-processing-based model that automatically extracts fallen trees from large-scale aerial imagery, assesses their fall directions, and produces an area-averaged treefall vector map with minimal initial human interaction. The automated model achieves a median tree direction difference of 13.3° when compared to the manual tree directions from the Alonsa, Manitoba, tornado, demonstrating the viability of the automated model compared to manual assessment. Overall, the automated production of treefall vector maps from large-scale aerial imagery significantly speeds up and reduces the labor required to create a Treefall Identification and Direction Analysis map from a matter of days or weeks to a matter of hours.
ISSN:2769-7525
2769-7525
DOI:10.1175/AIES-D-23-0062.1