Loading…

Tropical Atmospheric Madden–Julian Oscillation: A Strongly Nonlinear Free Solitary Rossby Wave?

The Madden–Julian oscillation (MJO), a planetary-scale eastward-propagating coherent structure with periods of 30–60 days, is a prominent manifestation of intraseasonal variability in the tropical atmosphere. It is widely presumed that small-scale moist cumulus convection is a critical part of its d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2017-10, Vol.74 (10), p.3473-3489
Main Authors: Yano, Jun-Ichi, Tribbia, Joseph J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Madden–Julian oscillation (MJO), a planetary-scale eastward-propagating coherent structure with periods of 30–60 days, is a prominent manifestation of intraseasonal variability in the tropical atmosphere. It is widely presumed that small-scale moist cumulus convection is a critical part of its dynamics. However, the recent results from high-resolution modeling as well as data analysis suggest that the MJO may be understood by dry dynamics to a leading-order approximation. Simple, further theoretical considerations presented herein suggest that if it is to be understood by dry dynamics, the MJO is most likely a strongly nonlinear solitary Rossby wave. Under a global quasigeostrophic equivalent-barotropic formulation, modon theory provides such analytic solutions. Stability and the longevity of the modon solutions are investigated with a global shallow-water model. The preferred modon solutions with the greatest longevities compare well overall with the observed MJO in scale and phase velocity within the factors.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-16-0319.1