Loading…

Evaluation of Climate in CMIP6 Models over Two Third Pole Subregions with Contrasting Circulation Systems

Reliable simulations of historical and future climate are critical to assessing ecological and hydrological responses over the Third Pole (TP). In this study, we evaluate the historical and future temperature and precipitation simulations of 18 models from the Coupled Model Intercomparison Project P...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2021-09, p.1-64
Main Authors: Li, Ying, Wang, Chenghao, Su, Fengge
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reliable simulations of historical and future climate are critical to assessing ecological and hydrological responses over the Third Pole (TP). In this study, we evaluate the historical and future temperature and precipitation simulations of 18 models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in southeastern TP (SETP) and the upstream of the Amu Darya and Syr Darya (UAS) regions, two typical TP subregions dominated by the Indian summer monsoon system and westerlies, respectively. Comparison against station observations suggests that CMIP6 models generally capture the intra-annual variability and spatial pattern of historical climate over both subregions. However, the wetting and cold biases observed in CMIP5 still persist in CMIP6; annual temperature is underestimated by most models and annual precipitation is overestimated by all models. Multi-model average cold biases in SETP and UAS are 1.18°C and 0.32°C, respectively, and wet biases in SETP and UAS are 119% and 46%, respectively. We further analyze climate projections under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Both SETP and UAS subregions are projected to experience significant warming in 2015–2100, with warming trends 34%–42% and 40%–50% higher than the global trend, respectively. Model projections suggest that the warming trend will slow down under SSP1-2.6 and SSP2-4.5 but further intensify under SSP5-8.5 in 2050–2100. Monsoon-dominated SETP is projected to experience a significant wetting trend stronger than UAS over the entire future period, especially in summer (cf. winter in westerlies-dominated UAS). Concurrently, a significant drying trend in summer is found in UAS during 2050–2100 under SSP5-8.5, suggesting the intensified uneven distributions of seasonal precipitation based on projections.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-21-0214.1