Loading…

CMIP6 Model-projected Hydroclimatic and Drought Changes and Their Causes in the 21st Century

Drought is projected to become more severe and widespread as global warming continues in the 21 st century, but hydroclimatic changes and their drivers are not well examined in the latest projections from the Phase Six of the Coupled Model Inetercomparison Project (CMIP6). Here, precipitation (P), e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2021-11, p.1-58
Main Authors: Zhao, Tianbao, Dai, Aiguo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought is projected to become more severe and widespread as global warming continues in the 21 st century, but hydroclimatic changes and their drivers are not well examined in the latest projections from the Phase Six of the Coupled Model Inetercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer Drought Severity Index with Penman-Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the 21 st century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia; although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ~25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the 21 st century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm; while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Inter-model spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-21-0442.1